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Using an inverted encoding model to reconstruct spatial 
position and forward planning in a virtual reality environment
James W. Antony, Chris Baldassano, Mariam Aly, Nicholas B. Turk-Browne, Kenneth A. Norman 
Princeton University

Introduction
Previous fMRI studies have shown that the hippocampus represents spatial location1–5 and 
tracks path distance to target locations6–9. Additionally, many other regions contribute to these 
and other facets of spatial navigation, including angle orientation3,4,10–12. 
Major question: What can inverted encoding models13 reveal about how spatial goals are rep-
resented?

Methods
Participants (N = 26, 17 female) searched a 3-D environment for a hidden platform that 
changed location every other trial. Therefore, the platform location was unknown on odd trials 
and known on even trials.

We created a set of hexagonally-arranged spatial information channels that activated at various 
points along the movement trajectory.
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Discussion
Better platform representation on known vs. unknown trials could reflect future spatial 
goals or proximity to the platform on known trials.
Future directions:
- Relate findings to behavior
- Run encoding model on heading angle orientation
- Create voxel inversion maps to understand neural architecture of spatial representations
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