

The strategic allocation of working memory and episodic memory in prospective remembering: A neural network model

Ida Momennejad*, Momchil Tomov*, Kenneth A. Norman, Jonathan D. Cohen Princeton Neuroscience Institute, Princeton University

I. Background

The successful realization of future plans, prospective memory or PM, requires the agent to maintain and retrieve a goal for execution at a future time. PM poses a memory problem for periods during which the agent is occupied with other ongoing tasks (OG) while being responsive to target events that demand goal execution. We suggest a mechanistic account of how working memory (WM) and episodic memory (EM) strategies are integrated to strike the right balance between maintenance and retrieval when solving varieties of PM problem.

II. Behavioral paradigm OG task: Category match PM task: Syllable match **VEHICLE** \mathbf{PM} instruction Block order: BUILDING Target: tor * non-PM (baseline OG) "It is very important that you **ANIMAL** * PM every occurrence of the * non-PM (aftereffects) **SUBJECT** NO NO PM YES YES Einstein et al. 2005 **Correct resposnes:**

- Low WM

- High WM

1500

1000

Human

Baseline Focal Nonfocal

Baseline Focal Nonfocal

Baseline Focal Nonfocal

≥ 2000h

\(\sigma 1500\)

<u>1000</u>

V. WM capacity & strategic WM-EM balance

Simulation

Baseline Focal Nonfocal

Baseline Focal Nonfocal

Baseline Focal Nonfocal

Prediction —

Simulation: high EM

Baseline Focal Nonfocal

Strengthening EM

and compensates

for low WM

Brewer et al. 2010

improves PM

III. Neural network model Input-output mapping

WM control network: dynamics of LCAs (2)

VI. Commission errors

Commission errors: PM response is made outside PM context. We suggest (i) strong encoding of PM context or (ii) strong EM target-task association can trigger a bottom-up reaction to a former PM target. Over time, context activation & hence CEs diminish.

IV. Simulation of major behavioral phenomena

Focal PM:

OG task's stimulus features are same as PM target's

Non-focal PM:

Attention to different features for OG stimuli vs. PM target PM emphasis:

Priority of PM vs. OG (e.g. PM more rewarding)

Exp 2. Focal vs. nonfocal costs over time

Exp 3. 1 target vs. 6 targets

Exp 4. Individual differences in OG RT costs reflect low cost vs. high cost strategies (n=104)

Simulation Exp 5. After-effects

after PM task is over, slower RT to a former target during 3rd task

Conclusions

Our mechanistic model combines WM & EM strategies to solve the prospective memory problem, & shows human-like regulation of planned action while perfomring ongoing tasks. Representations & dynamics derived from the model can be compared to patterns & dynamics of fMRI data from PM paradigms to test our proposed mechanism.

References & acknowledgments

- 1- Einstein, G. O., McDaniel, M. A. et al. (2005). Multiple processes in prospective memory retrieval: factors determining monitoring versus spontaneous retrieval. JEPG.
- 2- Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: the leaky, competing accumulator model. Psychological Review.
- 3- Brewer et al. (2010). Individual differences in PM: Evidence for multiple processes supporting cue detection. Memory and Cognition.
- This work was supported by the John Templeton Foundation.

idam@princeton.edu