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ABSTRACT: The hippocampus is involved in the learning and repre-
sentation of temporal statistics, but little is understood about the kinds
of statistics it can uncover. Prior studies have tested various forms of
structure that can be learned by tracking the strength of transition prob-
abilities between adjacent items in a sequence. We test whether the
hippocampus can learn higher-order structure using sequences that
have no variance in transition probability and instead exhibit temporal
community structure. We find that the hippocampus is indeed sensitive
to this form of structure, as revealed by its representations, activity
dynamics, and connectivity with other regions. These findings suggest
that the hippocampus is a sophisticated learner of environmental regu-
larities, able to uncover higher-order structure that requires sensitivity
to overlapping associations. VC 2015 Wiley Periodicals, Inc.
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A growing literature suggests that the hippocampus is important for
the rapid extraction of temporal structure in the environment (Curran,
1997; Strange et al., 2005; Turk-Browne et al., 2009; Turk-Browne
et al., 2010; Harrison et al., 2006; Bornstein & Daw, 2012; Schapiro
et al., 2012, 2014). Such temporal structure is typically created in
experiments by varying the strength of transition probabilities between
adjacent items in a continuous sequence. Transitions to improbable
events can drive prediction error, which has in turn been argued to sup-
port event segmentation (Reynolds et al., 2007; Zacks et al., 2011).
Relying only on variation in strength of transition probabilities is limit-
ing, though, as real world temporal events often involve more complex,
higher-order relationships. Indeed, a recent study (Schapiro et al., 2013)
demonstrated that humans can learn a form of higher-order structure

known as temporal community structure (Fortunato,
2010; Newman, 2003), even though strength of tran-
sition probabilities, and therefore strength of predic-
tion errors, were uninformative. Here we show that
the hippocampus can learn such higher-order struc-
ture, extending beyond its known role in statistical
learning of transition probabilities. Specifically, we
demonstrate that representations of items in the hip-
pocampus cluster according to community member-
ship, that the hippocampus deactivates at the
boundaries between communities, and that the hippo-
campus selectively couples with other regions involved
in event learning at different points in the structure.

Detailed methods can be obtained from a prior pub-
lication on which this re-analysis was based (Schapiro
et al., 2013). To summarize, participants were exposed
to sequences of stimuli generated from a random walk
on a graph with three communities (Fig. 1A) prior to,
and during, an fMRI scan (prior to the scan, stimulus
duration was 1.5 s with no ISI, and during the scan it
was 1 s with 1, 3, or 5 s ISI to facilitate estimation of the
response to individual items). In graph analysis, a com-
munity refers to a cluster of nodes that share a large
number of connections among themselves, relative to
the number of outgoing connections they share with
other graph nodes. Each node was randomly assigned a
unique abstract visual stimulus, with edges between
nodes indicating possible transitions between stimuli.
The graph never gave rise to moments of prediction
error because each node had exactly four neighbors and
the transition to each neighbor occurred with equal
probability (0.25). Despite this, there was strong tem-
poral structure: nodes in the same community were pre-
ceded and followed by overlapping sets of nodes. In
other words, nodes in the same community shared
neighbors, whereas those from different communities
did not. Participants were not informed about the struc-
ture and performed a cover task of pressing a button on

each trial to indicate whether or not they thought the
image was rotated from its usual orientation.

Previous work, by Schapiro et al. (2012), has
shown that the patterns of activity in the hippocam-
pus evoked by two items become more similar over
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time if those items are part of the same event. In that work,
the events were defined by a high frequency of co-occurrence
of the items within an event and stronger transition probabil-
ities within compared to between events. We first tested
whether the hippocampus would show an analogous pattern
similarity effect for items from the same community, despite
the fact that co-occurrence frequency and transition probability
strength were uniform (all sequences of a given length occur
equally frequently in a random walk on the graph). Previous
whole-brain searchlight analyses of the present dataset identi-
fied the left inferior frontal gyrus (IFG), left anterior temporal
lobe (ATL), and left superior temporal gyrus (STG) as having
representations whose similarity reflected this community struc-
ture (Schapiro et al., 2013).

We extend these findings with a hypothesis-driven region-of-
interest (ROI) analysis of the hippocampus, motivated by the
growing literature on the role of the hippocampus in basic sta-
tistical learning. Specifically, we assessed representational simi-
larity in bilateral hippocampal ROIs defined from a
probabilistic atlas of the medial temporal lobe (MTL; Hindy
& Turk-Browne, 2015). We calculated the average blood oxy-
genation level-dependent (BOLD) activity patterns evoked by
each of the 15 stimuli across all voxels in each ROI and across
3 3 3 3 3 voxel searchlights within these ROIs. We then
calculated the Pearson correlation between the voxel pattern
vector corresponding to each item and the vector for each
other item, yielding a 15 by 15 similarity matrix. To look for
the predicted similarity structure, we compared the mean

FIGURE 1. Pattern similarity in the hippocampus. A: Graph used
to generate sequences of stimuli. An abstract visual stimulus was
assigned to each node and the edges represent possible transitions
between stimuli. The three graph communities are colored in purple,
green, and orange, with community boundary nodes in a lighter shade.
B: Mean pattern similarity (Fisher transformed correlation) for within
and between community pairs of items when defining patterns across
all voxels in an ROI. Error bars denote 6 1 within-subject SEM

(Morey, 2008). *P < 0.05. C: MDS for visualization of the representa-
tional clustering in the bilateral hippocampus. Colors indicate corre-
spondence to the nodes in the graph. D: Voxel centers of searchlights
that showed greater similarity within- vs. across- community within
right hippocampus (outlined with green border). The searchlight sur-
rounding the brightest voxel passed a threshold of P < 0.001 uncor-
rected. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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Fisher-transformed correlation between items in the same com-
munity to that for items across different communities, control-
ling for distance traveled in the graph between items.

First considering stimulus-specific activity patterns across all
voxels in the hippocampus (Fig. 1B), we found greater within-
than across-community similarity in the bilateral hippocampus
(t[19] 5 2.15, P 5 0.045) and left hippocampus (t[19] 5 2.14,
P 5 0.046; right hippocampus: t[19] 5 1.32, P 5 0.203). A
multidimensional scaling (MDS) plot of the bilateral hippo-
campal representations provides a visualization of this similarity
structure (Fig. 1C), where each dot represents one item and
the distance between two dots corresponds to the average simi-
larity across subjects between those two items. (Statistics were
calculated from the full correlation matrix for each subject, not
from this scaled representation of average distances.) Items
from the same community are clustered, demonstrating the
learning of representations that reflect the community structure
of the graph.

To explore the possibility of more local pattern similarity, we
also ran searchlights within each hippocampus ROI, and found
one searchlight in the right anterior hippocampus with repre-
sentational structure that reflected the community structure of
the graph (P< 0.001 uncorrected; Fig. 1D). The fact that right
but not left hippocampus was revealed in this analysis, whereas
the reverse was true in the full ROI analysis, could potentially
reflect a more focal representation in this hemisphere.

To further explore which subregions of the hippocampus
might be contributing to these effects, we ran the same analyses
across all voxels within hippocampal subfields CA1, CA2/3/
DG, and subiculum, in each hemisphere. Though we did not
scan at high enough resolution to confidently resolve these sub-
fields, we performed exploratory analyses using probabilistic
atlas labels (Hindy & Turk-Browne, 2015) derived from a
database of manual anatomical segmentations. Aly and Turk-
Browne (2015) describe the procedures used for these segmen-
tations, which involved tracing based on anatomical landmarks
in each coronal slice of the MTL at 0.44 3 0.44 mm in-plane,
1.5 mm thickness resolution. The only subfield that had reli-
ably different within- vs. across-community similarity was left
CA1 (t[19] 5 2.60, P 5 0.018; all other Ps> 0.286). Though
this exploratory analysis is suggestive that CA1 may be the
most involved subfield of the hippocampus, it is important to
note that the P value does not survive Bonferroni correction
for three subregions with two hemispheres each (alpha 5 0.05/
6 5 0.008), and, as noted earlier, the CA1 label is only approx-
imate at this resolution. Future work will be needed to better
understand the contribution of different hippocampal subfields.

We also used the probabilistic atlas of the MTL (Hindy &
Turk-Browne, 2015) to test whether MTL cortex, in addition
to hippocampus, might show these pattern similarity effects, as
had been found in a prior study of pattern similarity during
statistical learning (Schapiro et al., 2012). We looked at pattern
similarity across all voxels in each hemisphere of entorhinal
cortex, perirhinal cortex, and parahippocampal cortex, and did
not find evidence for greater similarity in MTL cortex for
items within the same community versus from different com-

munities (all Ps> 0.137). However, there was a hint of an
effect when the voxels in these subregions were pooled into
one large MTL cortex ROI (P 5 0.066).

We next investigated whether the hippocampus is sensitive
to the boundaries between events. In previous general linear
model (GLM) analyses, we found that the medial prefrontal
cortex (mPFC) was active within a community traversal and
transiently deactivated at community boundaries (Schapiro
et al., 2013). Using the same GLM, we averaged the beta
weights for the regressor coding for community boundaries
across voxels in the hippocampal ROIs (Fig. 2A). The overall
level of activity in the hippocampus was indeed sensitive to
boundaries, in the same manner as mPFC (Fig. 2B): The hip-
pocampus was relatively active within an event, and then

FIGURE 2. Boundary effects in the hippocampus. A: Illus-
tration of the regressor used in the GLM to examine sensitivity
to boundaries, with higher activity within a community com-
pared to at event boundaries. B: The average beta weights from
the boundary regressor across voxels in hippocampal ROIs.
The negative beta values reflect lower activity at community
boundaries compared to within communities. Error bars
denote 6 1 SEM. *P < 0.05; §P < 0.1. [Color figure can be
viewed in the online issue, which is available at wileyonlineli-
brary.com.]
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deactivated at event boundaries (bilateral: t[19] 5 2.27,
P 5 0.035; right: t[19] 5 2.38, P 5 0.028; left: t[19] 5 1.86,
P 5 0.079). We examined whether this effect was specific to
the hippocampus and mPFC by testing for it within the other
regions we previously found to be involved in this task, includ-
ing IFG, insula, ATL, and STG (Schapiro et al., 2013). The
beta weights for the boundary regressor were not reliable in
any of these other ROIs (Ps> 0.179). These results suggest
that the hippocampus is not only learning representations of
items that reflect community structure, but that its overall
activity is sensitive to event boundaries.

The fact that the hippocampus is both involved in item rep-
resentation and shows sensitivity to boundaries suggests that it
might be an important hub in the network of regions involved
in learning higher-order temporal structure. To evaluate this
idea, we performed a functional connectivity analysis in which
we contrasted connectivity immediately after a boundary event
with connectivity during periods within a community traversal.
We focused on connectivity between the hippocampus (defined
anatomically), the mPFC, and the left IFG (the latter two
defined functionally). We chose the mPFC because it was the
region sensitive to community boundaries in the whole-brain
GLM (Schapiro et al., 2013). We chose the left IFG because
this region was implicated by two different analyses – the pat-
tern similarity analysis, as well as an adaptation analysis, which
assessed representational similarity in a different way (Schapiro
et al., 2013). The left IFG has also been implicated in other
statistical learning studies (Turk-Browne et al., 2009; Karuza
et al., 2013).

To assess functional connectivity, we calculated correlations
between the BOLD timeseries from these ROIs. We first fit a
nuisance GLM to remove sources of noise that induce spurious
correlations (Fox & Raichle, 2007). The GLM included regres-
sors for head movement in six directions, global mean signal,

mean signal in ventricles, and mean signal in white matter. We
excluded voxels with very high variance (more than three
standard deviations outside of the mean variance), and then
averaged the residual timeseries across voxels within each ROI.

Functional connectivity was contrasted between two 6-s
(3 TR) periods: (1) boundary periods, 6 to 12 s after a
boundary occurred within a Hamiltonian path (see Schapiro
et al. (2013) for explanation of Hamiltonians); and (2)
within-community periods, 4 s before to 2 s after a boundary
occurred within a Hamiltonian path (see Supporting Infor-
mation Figure S1). Taking into account the temporal lag of
the hemodynamic response, these periods corresponded,
respectively, to the neural response between the beginning of
the boundary stimulus to a few seconds after the boundary,
and to the same length of neural activity before the
boundary.

We used a background connectivity approach (Al-Aidroos
et al., 2012; Norman-Haignere et al., 2012) to control for the
potentially spurious contribution of stimulus-evoked activity to
functional connectivity. Specifically, for each TR in a period,
we subtracted the mean evoked activity for the corresponding
timepoint across all periods of that type. The remainder thus
had an across-period mean of zero at each timepoint, prevent-
ing evoked responses from confounding functional connectivity
on average. All periods of a given type were then concatenated
to produce a long timecourse. The activity left over from this
procedure is thought to reflect spontaneous fluctuations. If
such fluctuations are correlated between regions over time,
these regions can be said to be part of the same functional net-
work. Insofar as these correlations change according to the type
of period (i.e., boundary vs. within-community), then different
networks may underlie processing at these different points in
the graph. To test for this kind of effect, we calculated the
Pearson correlation of the concatenated timecourses across

FIGURE 3. Background connectivity with the hippocampus. Connectivity between mPFC
and hippocampus and between left IFG and hippocampus within a community and at commu-
nity boundaries. Error bars denote 6 1 SEM. *P < 0.05; **P < 0.01; §P < 0.1.
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ROIs for each of the period types and Fisher transformed the
coefficients prior to statistical testing.

We found an interaction in the connectivity profiles in bilat-
eral hippocampus and right hippocampus (Fig. 3): The time-
courses in these regions were more correlated with mPFC at
community boundaries but more correlated with left IFG
within communities (bilateral: t[19] 5 1.88, P 5 0.076; right:
t[19] 5 3.13, P 5 0.006); we did not find this interaction in
left hippocampus (t[19] 5 0.219, P 5 0.829). There was no
change in correlation directly between mPFC and left IFG for
boundary vs. within-community periods (t[19] 5 0.115,
P 5 0.910). This double dissociation in connectivity is unlikely
to be caused by factors such as differences in SNR or ROI size,
as the hippocampal connectivity with left IFG and with mPFC
is similar in size but present in different conditions. We ran
several additional control analyses, which further validated
these findings (see Supporting Information). These results
therefore suggest that the hippocampus may interact more with
the mPFC when processing the move to a new community
(despite the fact that both regions are less active overall at this
time), and may interact more with left IFG when processing
the internal structure of an event.

In summary, we found that the hippocampus was sensitive
to higher-order, community structure. Neural representations
of objects in the same vs. different communities became more
similar to each other in the hippocampus. Moreover, the hip-
pocampus was more active within a community than at a com-
munity boundary. When examining functional connectivity
during the task, the hippocampus interacted more with the
left IFG—a region with analogous representational similarity—
within communities, and it interacted more with the mPFC—
a region that also detected event boundaries—at the
boundaries.

The pattern similarity results suggest that the hippocampus
rapidly comes to represent items in terms of their temporal
context, which is consistent with other recent findings and the-
ories (Howard et al., 2011; Schapiro et al., 2012; Hsieh et al.,
2014; Ezzyat & Davachi, 2014; Davachi & DuBrow, 2015).
The present findings suggest that this learning is more sophisti-
cated than simply associating adjacent items or tracking transi-
tion probabilities. A common mechanism that might account
for the previous as well as present findings is that the hippo-
campus can learn to represent items in terms of the similar
predictions that they make about the future—here, commun-
ities can be identified by the fact that items within them make
similar predictions about what items can come next (Schapiro
et al., 2013).

The finding that the hippocampus was less active at event
boundaries may be related to work showing that event bounda-
ries disrupt memory processes (Speer & Zacks, 2005; Ezzyat &
Davachi, 2011; DuBrow & Davachi, 2013). The hippocampus
may bind the observations within each event into one episode,
and clear its activity as it moves on to the next episode. The
fact that functional connectivity increases between mPFC and
hippocampus at boundaries may suggest that this transition

phase, despite corresponding to lower activity in both areas, is
still meaningfully processed.

An important goal for future work will be to understand
whether learning happens independently and locally in the hip-
pocampus, mPFC, and left IFG, or whether one region drives
changes in the others. The fact that the hippocampus learns so
rapidly compared to cortex (McClelland et al., 1995) and that
a patient with MTL damage cannot learn new temporal struc-
ture (Schapiro et al., 2014) suggests that the representational
similarity effects reported previously in left IFG, ATL, and
STG (Schapiro et al., 2013) may have been mediated by the
hippocampal changes. The functional connectivity finding that
the hippocampus communicates with left IFG within com-
munities and with mPFC at community boundaries lends fur-
ther support to the idea that the hippocampus is a hub driving
the effects in other regions. One possibility to explore is that
the hippocampus mediates these changes initially, but that they
can become hippocampally independent over a consolidation
period (Squire, 1992; McClelland et al., 1995; Yamashita
et al., 2009; Durrant et al., 2013).

In conclusion, our findings provide new insight into the role
of the hippocampus in statistical learning and event representa-
tion. The hippocampus is able to rapidly learn the structure in
these community-based sequences despite there being no transi-
tion probability or frequency cues to anchor on. The findings
suggest that the hippocampus may be a key player in a net-
work of regions involved in new event learning.
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