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Introduction
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Which areas represent the posterior?

Situation models and “schemas” The posterior-medial network . o . — match to posterior
Serve to organize thoughts and experiences as we encode them into memory Representational similarity analysis (RSA) n=27 | |
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Central question: How do we infer what situation we are in? =5 « =54 EWE corrected

Trial 1 Trial 2

t=1 t=2 t=3 t=4 t=5
. . t=1 t=2 t=3 t=4  t=5 X X iy iy — maitch to posterior > match to MAP
Using Bayesian latent cause models? e I R @‘@ &@’ @@ @@ @@’ P
' ' ' ' ' ' ' ' ' 1 (=1 | | | ' ' ' ' ' ' 1 | _ : .
: : : : : : t=1 . i MAP = maximum a posteriori
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Hypothesis: Brain regions implicated in situation modelling (the PM network) represent waz | 4D - - @@ - |os
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What the similarity structure What the similarity structure
should look like actually looks like

S | — match to posterior correlates with behavioral performance
The safari is divided into 4 “zones” Animals appear in di erent zones with di erent probabilities: (across subjects)
Take correlation of these two matrices to obtain

BLUE YELLOW PINK GREEN _ o _
the representational similarity match of ROl and posterior _
. n=32
YELLOW ELEPHANT
P < 0.05 uncorrected
GIRAFFE ] )
HIPPO ] | |] Or alternate models X =-56
LION 0
GREEN N B . .
\}/I%\(E Q{I\}&({; \}/I%(E | | 0 02 04 0 02 04 0 02 04 0 02 04 U n Ivarlate a.n alyses

Subjects are trained on these probabilities before scanning.
Which areas update the posterior? Which areas represent surprise? Which areas represent con dence? Which areas represent di culty?

1 to 6 animals

Which of these zones

Is MORE likely?
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parametric regressor: parametric regressor: parametric regressor: P(MAP) parametric regressor. entropy
KLdiv( Posterior at t, Posterior att-1 )  P(current animal | animals seen so far)
Subjects must continuously update their beliefs about the posterior probability of each zone. N eXt Ste pS
Performance on “Which zone is more/less likely”:
. . Further alternate models for RSA Connectivity analyses Relationship with behavior
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all questions most probable zone (MAP) Di culty / attention / uncertainty / con Ict /\ Trial-by-trial correlations
0.7 | as an option | o Associative / Hebbian model posterior update posterior representation Try to infer likelihood and posterior
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