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Oscillations Drive Learning in Retrieval-Induced Forgetting 
Ehren Newman & Kenneth Norman

RIF Task (from Levy & Anderson, 2002)

Fruit - Pear
Fruit - Apple
Red - Apple
Red - Rose

Fruit - P____
Fruit - A____
Red - A____
Red - R____

Fruit - Pe___
(partial practice)

or
Fruit - Pear

(full practice)

Study Practice Test

Recall after practice, relative to baseline

Test Item

In other words, if given a partial practice - 
	 •Recall of the practiced item improves (Fruit-Pear)
	 •Recall of competitors gets worse (Fruit-Apple),
	  in a cue-independent fashion (Red-Apple)
and if given a full practice - 
	 •Recall of the practiced item improves (Fruit-Pear)
	 •Other items are unaffected (Red-Rose) 

After Partial Practice   After Full Practice
    (Fruit - Pe___)	 	      (Fruit - Pear)

Fruit - P(ear)

Fruit - A(pple)

Red - A(pple)

Red - R(ose)

BETTER

WORSE

WORSE

SAME

BETTER

SAME

SAME

SAME

Retrieval-induced forgetting (RIF) refers to the finding that retrieving a memory hurts 
subsequent recall of competing memories (see Levy & Anderson, 2002, for a review). In the work 
presented here, we use neural network simulations to explore how the brain gives rise to RIF.  In 
our prior work on this topic (Newman & Norman, 2003), we showed that a learning rule 
(suggested by O’Reilly and McClelland) that compares a state of low inhibition to a state of 
normal inhibition is able to identify and punish competitors in the RIF paradigm.  We now 
present a second-generation learning rule that, unlike its predecessor, is able to simultaneously 
store new information in the network and punish competitors.  The new rule relies on a 
continuous, “theta-like” oscillation in the strength of inhibition.  As before, moving between 
normal and lower-than-normal inhibition allows the network to identify and punish 
competitors.  Moving between normal and higher-than-normal inhibition serves the 
complementary function of identifying and strengthening weak parts of the target 
representation.  We show that this new, oscillation-based learning rule is capable of training a 
large number of heavily overlapping patterns into a network (so that stored patterns can be 
retrieved given partial cues), and it also can account for detailed patterns of RIF data.  We discuss 
the relationship between our new rule and cortical theta.  We also discuss how this view of RIF 
(which emphasizes basic cortical learning mechanisms) relates to Anderson’s account of RIF, 
which focuses on the role of prefrontal cortex in modulating competition. 

Abstract

Background
Conflict Resolution:
	 Anderson has emphasized role of prefrontal cortex (PFC) in resolving competition
	 	 - PFC works to inhibit competitors
	 	 - Indirect vs. direct suppression not specified
	 	 - Mechanism of lasting effects not specified

Our Approach:
	 Identify basic learning mechanisms that can account for lasting RIF
	 	 - Newman & Norman (2003) used a learning algorithm 
	 	   suggested by O’Reilly & McClelland
	 	 - Basic idea: Identify competitors by reducing inhibition
	 	 	 1. Present the input pattern twice

	 	 	 	 1st time – Low inhibition 
	 	 	 	 	 (allows both the target and competitors to become active)

	 	 	 	 2nd time – Normal inhibition 
	 	 	 	 	 (only allows the best-fitting pattern to become active)

	 	 	 2. Record final pattern of activity each time
	 	 	 	 Units that “pop up” when inhibition is reduced are competitors.
	 	 	 	 Punish these units by making them less excitable.

PROBLEMS: 
	 1. Requires multiple presentations of stimuli
	 2. Requires mechanism to take and compare snapshots of activity
	 3. NOT ABLE TO STORE NEW INFORMATION

Oscillation based learning rule (Norman, Newman, & Polyn, in preparation)
Inspired by cortical oscillations such as theta
	 There when you need it - 
	 	 Theta is gated by stimuli presentation (Raghavachari et al, 2001)
	 Orients to simuli - 
	 	 Theta phase is reset by stimulus onset (Rizzuto et al, 2003)
	 Plasticity varies with it - 
	 	 Sign of plasticity depends on phase of theta (Heurta & Lisman, 1996)

NO NEED FOR MULTIPLE PRESENTATIONS

	NO NEED FOR SNAPSHOTS

ABLE TO STORE NEW INFORMATION 

Oscillate between NORMAL - LOW - NORMAL inhibition (N-L-N)
	
	 Low inhibition = Less constraint on network activity
	 The network has more space to represent 
 	 competitors (as well as the target)	
	
	 LOWERING inhibition lets the network identify competitors
	

Oscillate between NORMAL - HIGH - NORMAL inhibition (N-H-N)
	
	 High inhibition = More constraint on network activity
	 Stress-test of target:  Poorly supported units turn off,
       well-supported units remain active
	 	
	 RAISING inhibition lets the network identify weak parts 
       of the target

Learn based on changes in activity

Changing activity during N-L-N = competitors popping up

How to map changing activity to learning signal:
	 Inhibition decreases: Competitors become active
	 	 Therefore - increases in activity should trigger weakening

	 Inhibition returns to normal: Competitors back off
	 	 Therefore - decreases in activity should trigger weakening

Changing activity during N-H-N = target dropping out

How to map changing activity to learning signal:
	 Inhibition increases: Weak target units turn off

	 	 Therefore - decreases in activity should trigger strengthening

	 Inhibition returns to normal: Target turns back on

	 	 Therefore - increases in activity should trigger strengthening

Extract structure of stored information with oscillations
Low inhibition to punish competitors High inhibition to strengthen target

TARGET:
STUDY PATTERN / 

FULL PRACTICE

TARGET:
PARTIAL PRACTICE 

PATTERN

Materials and Procedure
The Network

Hidden layer:
	 250 units
	 ~10% active at a time

Connections:
	 Full connectivity
	

Input Layer:
	 24 slots of inormation
	 10 units / slot
	 ~1 active /slot

- 24 slots of target
- Comparable to 
  "Fruit-Pear" in RIF 

- 12 slots of target
- Network completes
   the rest
- Comparable to 
   "Fruit-Pe__" in RIF

- 8 slots of competitor
- Some overlap with
  partial practice cue
- Comparable to 
   "Fruit-A___" in RIF

Network behavior during training
Graphs show activation of target and competitor , and overall level of  inhibition on one trial

Poorly Trained
Behavior

Well Trained
Behavior

Early in training:	
- High inhibition
	 Target units decrease in activity
	 Competing units show a slight increase in activity
- Low inhibition
	 Competing units increase in activity
	 Target units show a slight decrease in activity

Late in training:
- High inhibition
	 Target units strong enough to stay on
	 Activity of competing units does not change
- Low inhibition
	 Competing units too weak to come on
	 Activity of target units does not change

Data Retrieval Induced Forgetting

Partial Practice

Full Practice (Additional Study Presentation)

- Match between cue and target (relative to match between 
cue and competitor) is less good here 
- Competitor turns on during the low inhibition phase
- Change in activity leads to weakening of competitor

- Cue matches target perfectly
- Just like extra training
- Inhibitory oscillation does not affect network activity

Summary

- Local mechanism (no PFC) can account for basic Retrieval-Induced Forgetting results, 
including cue-independent effects of partial practice.

- Oscillation of inhibition reveals identity of competitors vs targets

- Weight changes based on oscillation phase and activity change can store new 
information and reduce competition 

Discussion
- Raghavachari et al (2001) and Rizzuto et al.(2003) suggest that cortical oscillations play a role in learning.  This model 
explicitly depicts the role that oscillations can play as an organizing force. 

- Although our model (as presented here) does not include PFC, we think PFC plays a critical role in biasing 
competition when the correct response is not the dominant response (e.g., in the "think-no think" paradigm; 
Anderson & Green, 2001).  Future modeling work will directly address PFC contributions.

- Our model shows how generic theta-like oscillations can help train cortical attractor networks.  In future research, 
we will explore how our model relates to other, more biologically detailed models of how theta modulates learning, in 
the hippocampus and elsewhere  (e.g., Hasselmo, Bodelon, & Wyble, 2002).
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Learning 
Curve

- RIF sims only used 4 patterns at training
- We also ran a more stringent test of the network's 
  ability to learn patterns (results pictured at left):
	 - 50 patterns at training
	 - 32.5% overlap between patterns
	 - Pattern completion tested with 50% partial cues

- Some facilitation of target item (already at ceiling)
- Very little effect on competitors
- Very little effect on control items

- Some facilitation of target item (already at ceiling)
- Large decrease in recall of competitor
	 - This occurs regardless of cue (cue independent)
- More effect on controls than full practice, still very little
	 - Also true of Anderson's data

Sample Stimuli

- 8 slots of competitor
- No overlap with
  partial practice cue
- Comparable to
   "Red-A___" in RIF

COMPETITOR:
INDEPENDENT 

PROBE

Implementation

1. Generate four patterns
	 A target pattern (presented at study and practice)
	 A competitor pattern (50% similar to target pattern, presented at study but not practice)
	 and two controls (50% similar to each other, presented at study but not practice)

Only oscillate inhibition in input layer
	 Input:
	 	 1. Calculate baseline inhibition to allow K active units
	 	 2. Add an oscillating component to this value

	 Hidden:
	 	 1. Calculate baseline inhibition to allow K active units
	 	 2. No oscillating component

Allow one full oscillation each trial

Calculate weight changes at every time step (but do not apply them)

Apply summed weight changes at the end of each trial 

LOW INHIBITION
(SHOW COMPETITORS)

HIGH INHIBITION
(SHOW WEAK TARGET UNITS)

Apple

I
N
H
I
B
I
T
I

O
N

(High)

(Low)

 

INHIBITION APPLIED TO INPUT LAYER 
(CONSTRAINT) 

Normal Low Normal High Normal 
Target on Target on Target struggles to stay on Target comes back on 

Competitor allowed on Competitor forced off Competitor off Competitor off 
Weaken changing units Strengthen changing units 

 

Pear

Pear

Pear

Pear

Apple

Apple

Apple Apple Pear

Update weights based on phase of theta and change in activation
Phase:
	 Normal to Low
	 	 Change = -lrate * (Sending_Act * Receiving_deltaAct)
	 	 (Increases in activation will cause negative change)
	 Low to Normal
  	 	 Change =  lrate * (Sending_Act * Receiving_deltaAct)
	 	 (Decreases in activation will cause negative change)
	 Normal to High
	 	 Change = -lrate * (Sending_Act * Receiving_deltaAct)
	 	 (Decreases in activation will cause positive change)
	 High to Normal
	 	 Change =  lrate * (Sending_Act * Receiving_deltaAct)
	 	 (Increases in activation will cause positive change)

2. Train the network on these patterns
	 Present the network with the complete patterns
	 Update weights after each pattern
3. Pretest the network's ability to pattern complete on all patterns
	 Present 33% of the pattern as cue
4. Allow network to practice target pattern
	 In case of partial practice:
	 	 Network completes 50% of the pattern
	 In case of full practice
	 	 Present the full pattern just like in training
5. Test the network's ability pattern complete on all patterns again
	 Compare to pretest performance to calculate practice effect  

Graph shows error in pattern completion
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Effect of practice
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Target
Competitor
Inhibition

Target
Competitor
Inhibition

For a downloadable version, please visit:  http://compmem.princeton.edu/publications.html

194.13

ELN was supported by an NIH Training Grant in Quantitative Neuroscience (MH65214) awarded to Princeton University


