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Multivoxel Pattern Analysis Reveals Increased Memory
Targeting and Reduced Use of Retrieved Details during
Single-Agenda Source Monitoring
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We used multivoxel pattern analysis (MVPA) of functional MRI (fMRI) data to gain insight into how subjects’ retrieval agendas influence
source memory judgments (was item X studied using source Y?). In Experiment 1, we used a single-agenda test where subjects judged
whether items were studied with the targeted source or not. In Experiment 2, we used a multiagenda test where subjects judged whether
items were studied using the targeted source, studied using a different source, or nonstudied. To evaluate the differences between single-
and multiagenda source monitoring, we trained a classifier to detect source-specific fMRI activity at study, and then we applied the
classifier to data from the test phase. We focused on trials where the targeted source and the actual source differed, so we could use MVPA
to track neural activity associated with both the targeted source and the actual source. Our results indicate that single-agenda monitoring
was associated with increased focus on the targeted source (as evidenced by increased targeted-source activity, relative to baseline) and
reduced use of information relating to the actual, nontarget source. In the multiagenda experiment, high levels of actual-source activity
were associated with increased correct rejections, suggesting that subjects were using recollection of actual-source information to avoid
source memory errors. In the single-agenda experiment, there were comparable levels of actual-source activity (suggesting that recol-
lection was taking place), but the relationship between actual-source activity and behavior was absent (suggesting that subjects were
failing to make proper use of this information).
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Introduction
Research on source memory, the ability to recall the conditions
under which a memory was acquired, has increasingly come to
focus on how agendas at the time of retrieval can influence which
mnemonic features are retrieved and used to make source judg-
ments (Johnson et al., 1993; Mitchell et al., 2008). One factor that
has been shown to influence source memory judgments is the
number of sources mentioned in the test instructions: Subjects
are more likely to falsely attribute items to a source when that
source is the only one mentioned at test (single-agenda source
monitoring) compared to when multiple sources are mentioned
at test (multiagenda source monitoring) (Lindsay and Johnson,
1989; Zaragoza and Koshmider, 1989; Dodson and Johnson,
1993; Henkel et al., 2000).

The goal of our study is to map out differences in how subjects
make source judgments on single-agenda versus multiagenda
tests. One possible difference relates to how subjects cue memory.

Results from single-agenda tests suggest that, on these tests, sub-
jects attempt to constrain retrieval to the targeted source by acti-
vating source-specific information from the study phase (Herron
and Rugg, 2003a; see also Rugg, 2004; Jacoby et al., 2005a,b);
according to the encoding specificity principle (Tulving and
Thomson, 1973), activating targeted-source information should
boost recall of the targeted source and reduce retrieval of nontar-
get source information. Subjects may be more prone to apply this
kind of constraint on single-agenda versus multiagenda tests. An-
other possible difference relates to decision-making: Johnson and
Raye (2000) make a distinction between activation (retrieval) of
information and how strongly subjects “weight” (use) retrieved
information. If subjects focus on the target source during single-
agenda tests, they may retrieve information pertaining to nontar-
get sources but fail to properly use this information when making
their source judgments.

To evaluate these hypotheses, we ran functional MRI (fMRI)
studies where we manipulated use of single-agenda versus mul-
tiagenda instructions. In these studies, we used multivoxel pat-
tern analysis (MVPA) (Norman et al., 2006) to measure activa-
tion (at test) of source-specific patterns of brain activity from the
study phase. We focused on trials where the targeted source and
the actual source differed (i.e., subjects were asked “Was this
word studied with source X?” when it was actually studied with
source Y). We hypothesized that different approaches to memory
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cuing and decision-making would be associated with distinct pat-
terns of activation. If subjects are more prone to constrain re-
trieval (by activating targeted-source information) in the single-
agenda case, this should show up as an increase in neural
activation of the targeted-source pattern in the single-agenda
condition. Also, we can evaluate how well subjects are using rec-
ollection of the actual (nontarget) source by looking at the rela-
tionship between neural activation of the actual-source pattern
and behavior. If subjects are using actual-source information to
make their source decisions, high levels of actual-source activa-
tion (indicating recollection of the actual, nontarget source)
should be associated with increased correct rejections. We pre-
dicted that actual-source activation would be more closely tied to
behavior in the multiagenda (vs the single-agenda) experiment.

Materials and Methods
Subjects. Eleven people participated in Experiment 1 (four female, ages
20 –26). Twelve people participated in Experiment 2 (six female, ages
19 –28). Subjects were drawn from the graduate and undergraduate stu-
dent community at Princeton University and received financial compen-
sation for their participation. The experiments were run sequentially
(first Experiment 1, then Experiment 2).

Materials. Experimental stimuli consisted of
216 noun words drawn from the MRC database
(Coltheart, 1981; Wilson, 1988). The words
that we used in the experiment were all between
4 and 9 letters in length (M � 5.33) and had a
Kucera and Francis frequency rating of between
1 and 50 (M � 17.52). The familiarity rating of
the words was between 500 and 620 (M �
541.84), the concreteness rating was between
550 and 670 (M � 592.22), and the imagery
rating was between 490 and 659 (M � 585.48).

The words were presented to subjects on the
computer via a projection system that reflected
the images onto a mirror above subjects’ eyes in
the bore of the magnet. Subjects studied a total
of 162 words. All 162 of these words were also
presented on the source memory test, mixed in
with 54 new words. The E-Prime software pack-
age (Psychology Software Tools) was used to
present stimuli and collect responses.

Overview of experiments. The behavioral par-
adigm that we used was an exclusion test
(Jacoby, 1991). Subjects were asked to study
nouns; each word was encoded using either the
artist encoding task, the function encoding task,
or the read encoding task (the tasks are de-
scribed below). During the test phase, subjects
viewed all studied items in addition to new, un-
studied items. On each trial, subjects were given
a task cue (“Artist?”, “Function?”, or “Read?”),
followed by a blank screen (lasting 3–7 s), fol-
lowed by the test word. When the test word
appeared, subjects had to indicate whether that
word was studied using the targeted task; Ex-
periment 1 and Experiment 2 used slightly dif-
ferent test instructions (described below). Test
trials in this paradigm be divided up into three
types: congruent trials, where the test word was
studied using the targeted source; incongruent
trials, where the test word was studied using a
nontarget source; and new-item trials, where
the test word did not appear at study.

Experiment 1 used single-agenda instruc-
tions. In this experiment, subjects were in-
structed to press one button to indicate with
high confidence that the test word was studied

using the targeted task, a second button to indicate with low confidence
that the test word was studied using the targeted task, and a third button
to indicate that the test word was not studied using the targeted task
(subjects rarely used the “low-confidence yes” response, so we collapsed
together “high-confidence yes” and low-confidence yes responses into a
single “yes” response category when analyzing the data). Experiment 2
was identical to Experiment 1, except it used multiagenda instructions:
For each test word, subjects were instructed to press one button to indi-
cate that the test word was studied using the targeted task, a second
button to indicate that the test word was studied using a different task,
and a third button to indicate that the test word was new (nonstudied).
Note that, here, subjects had to discriminate between three classes of
items (targeted task, different task, and new), whereas in Experiment 1
subjects only had to discriminate between two classes of items (targeted
and not targeted, where “not targeted” encompassed items studied using
a different task and new items).

Detailed procedure. Both Experiment 1 and Experiment 2 consisted of
six runs, where each run consisted of a study phase and then a test phase
that probed subjects’ memory for the immediately preceding study
phase. The sequence of events during a run is illustrated in Figure 1 and
described below (the test instructions shown in the figure are from Ex-
periment 1).

During the study phase, words were presented, one at a time. For each

Study Phase Test Phase

Study Phase!

Get ready to do
  ARTIST task

Do ARTIST task:
              

STAPLER

 1  2  3  4  5
easy      hard

Do ARTIST task:
             *
              

STAPLER

 1  2  3  4  5
easy      hard

Do ARTIST task:
              

HONEY

 1  2  3  4  5
easy      hard

Do ARTIST task:
             *
              

HONEY

 1  2  3  4  5
easy      hard

Do ARTIST task:
              

GOBLIN

 1  2  3  4  5
easy      hard

Do ARTIST task:
              *

GOBLIN

 1  2  3  4  5
easy      hard

READ?
1 = Lots of Read?
2 = Guess Read?
3 = Not Read?

DOLPHIN

READ?
1 = Lots of Read?
2 = Guess Read?
3 = Not Read?

STAPLER

Figure 1. Illustration of the experimental procedure used during a single scanning run, where each run consisted of a study
phase and a test phase (separated by a 1-min serial response task). The left side of the figure illustrates the sequence of events
during the study phase. The study phase consisted of miniblocks (lasting 3 trials) during which subjects performed a particular
encoding task (artist, function, or read). The lower-left part of the figure shows the trial sequence during an artist-task miniblock.
On each study trial, subjects were instructed to perform the specified encoding task for 2 s (without overtly responding); after 2 s,
an asterisk appeared, at which point subjects had 2 s to enter their 1-to-5 response. The right side of the figure illustrates the
sequence of events during the test phase. The test phase consisted of miniblocks (lasting 3 trials) during which subjects were asked
to target a particular encoding task. The lower-right part of the figure shows two example test trials from a read-task miniblock.
Subjects were presented with a mixture of old items from the study phase and new items. On each test trial, subjects were given
a task cue, followed by a test word; upon presentation of the test word, subjects had to indicate whether they had studied that
word with the targeted task. The test screens shown here are from Experiment 1 (the test instructions differed slightly for
Experiment 2).
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word, subjects encoded that word using the artist task, the function task,
or the read task. The artist and function tasks were adapted from Dzulki-
fli and Wilding (2005) (see also Johnson et al., 1997a), and the read task
was adapted from Davachi et al. (2003). For the artist task, subjects were
asked to rate how easy it would be to draw each object, on a scale of 1–5
where 1 is easy and 5 is hard. For the function task, subjects were asked to
think of functions for each object, and then to press a key corresponding
to the number of functions they were able to generate (1–5). For the read
task, subjects silently read words backwards to themselves (the words
were displayed forwards, not backwards) and rated how difficult it was to
do so (where 1 is easy and 5 is hard). For all tasks, subjects entered their
responses on a keypad while lying in the scanner.

Each study phase consisted of 27 trials that were evenly split across the
3 encoding tasks (i.e., subjects studied 9 words using the artist task, 9
words using the function task, and 9 words using the read task). Trials
were arranged in miniblocks of 3 trials, where all trials in the miniblock
used the same encoding task. For each miniblock, subjects were first
given a task cue (lasting 6 s) that notified them which task they would be
performing. The task cue was followed by 3 words presented for 4 s each.
For each word, the 4-s presentation period was broken into “study” and
“response” phases as follows. For the first two seconds, subjects saw only
the word and the rating scale that they would use. During the last two
seconds, a small star appeared above the word, and subjects had to enter
their numerical (1–5) rating using the keypad. After each study phase,
subjects spent 1 min completing a basic serial response task, where num-
bers appeared on the screen and subjects were required to press buttons
corresponding to these numbers. The test phase immediately followed
the end of the serial response task.

During the test phase, subjects were presented with a mixture of all 27
items they had seen at study and 9 new words. For each word, subjects
were first given a task cue that specified one of the three encoding tasks
(e.g., Artist?). We will refer to this task as the targeted task. The task cue
was presented for 1 s, and then a blank screen was presented for variable-
length delay period, lasting 3, 5, or 7 s (for each test phase, 24 test trials
had a 3-s delay, 9 trials had a 5-s delay, and 3 trials had a 7-s delay). After
the delay, the test word was presented.

As mentioned above, the instructions for responding to the test word
were different for Experiment 1 and Experiment 2. In Experiment 1,
subjects were required to indicate whether the item was studied with the
targeted task or not. In Experiment 2, subjects were required to indicate
whether the item was studied using the targeted task, a different task, or
was new. In both experiments, subjects had two seconds to enter their
response; if they did not respond in time, the trial timed out (and “no
response” was recorded in the data file). After each test trial, there was a
variable-length delay (24 test trials had a 2-s delay, 9 trials had a 4-s delay,
and 3 trials had a 6-s delay). During the test period, subjects switched
retrieval orientations every 3 trials. That is, they received 3 trials in a row
where they were asked to target one encoding task; then, for the next 3
trials, they were asked to target a different encoding task, and so on.
Exactly half of the test trials were incongruent, 25% were congruent
trials, and 25% were new trials. Each of the three encoding tasks served
equally often as the targeted task.

fMRI data acquisition. The fMRI data were acquired on a Siemens
Allegra 3 Tesla scanner at the Center for the Study of Brain, Mind, and
Behavior at Princeton University. Anatomical brain images were ac-
quired with an MP-RAGE sequence consisting of the following pa-
rameters: 176 sagittally oriented slices, repetition time (TR) � 2500
ms; echo time (TE) � 4.38 ms; voxel size � 1.0 � 1.0 � 1.0 mm; flip
angle � 78°; field of view (FOV) � 256 mm. Functional images were
acquired with an EPI sequence where 34 sagittal slices covering the
whole brain were collected every 2 s (TR length). TE � 30 ms; voxel
size � 3.0 � 3.0 � 3.9 mm; flip angle � 75°; FOV � 192 mm.
Anatomical images were acquired at the start of the session. The main
part of the experiment consisted of six functional runs. As described
earlier, each run encompassed a single study phase and test phase; 292
images were collected per run.

fMRI data analysis: Preprocessing of fMRI data.We used the Analysis of
Funtional NeuroImages (AFNI) fMRI data analysis software package
(Cox, 1996) to preprocess the data. First, all functional images were

coregistered with the first functional scan, and signal spikes were re-
moved. A motion correction algorithm was applied to the data to remove
any artifacts associated with head motion. Within each run, linear and
quadratic trends were removed to remove the effects of scanner drift. No
spatial smoothing was applied to the dataset.

Multivoxel pattern analysis: Overview. We used MVPA to measure ac-
tivation (at test) of source-specific patterns of fMRI activity from the
study phase. The MVPA approach to analyzing fMRI data involves train-
ing a pattern classifier to detect multivoxel patterns of fMRI data corre-
sponding to particular cognitive states (for reviews, see Haynes and Rees,
2006; Norman et al., 2006). By aggregating the information that is
present in multiple voxels’ responses, MVPA achieves a higher level of
sensitivity to the subject’s cognitive state than standard mass-univariate
approaches. In our study, the increased sensitivity of MVPA makes it
possible to track fluctuations in activation of the targeted source and also
fluctuations in source-specific recollection across single brain scans
(where each scan was acquired over a 2 s period). These fluctuations, in
turn, can be related to subjects’ behavior.

Our MVPA analysis procedure closely resembled the procedure that
we used previously by Polyn et al. (2005). The procedure was composed
of three steps: First, we selected voxels to use in the classification analysis.
Second, we trained a classifier to discriminate between study-phase brain
patterns corresponding to subjects performing the artist, function, and
read encoding tasks. Third, to measure activation of study-phase pat-
terns, we applied the trained classifier to single (2-s) brain scans from the
test phase. The output of the classifier gives us a graded index of how well
the test pattern matches the artist, function, and read brain patterns from
the study phase. As is typical for MVPA analyses, the analysis procedure
was performed within individual subjects (i.e., voxel selection, classifier
training, and classifier testing were all performed on data from the same
subject).

Multivoxel pattern analysis: Details. To select voxels for the classifica-
tion analysis, we ran a mass-univariate General Linear Model analysis in
AFNI, and we found the 1000 voxels (across the whole brain) that were
most strongly affected by the encoding task manipulation (artist vs func-
tion vs read) at study. After completing voxel selection, the functional
data from these 1000 voxels were loaded into MATLAB (Mathworks)
using the Princeton MVPA Toolkit (http://www.csbmb.princeton.edu/
mvpa). All of the subsequent classification steps used the MVPA Toolkit.
First, we z-scored the functional data separately for each voxel and each
run, to ensure that we had a normalized activation value across runs.
Next, we trained a simple neural network classifier (looking just at the
selected voxels) to discriminate between single brain scans acquired
while subjects were performing the artist, function, and read encoding
tasks at study. The neural network consisted of two layers: an input layer
with 1000 units (corresponding to each of the 1000 selected voxels), and
an output layer with 3 units (one per encoding task). Each input unit was
connected in a feedforward manner to all 3 output units; these connec-
tion weights define a function that maps between voxel activity values
and encoding task. Neural network training was implemented using the
backpropagation algorithm, which iteratively adjusts connection weights
to minimize prediction error when mapping between inputs and outputs
(Rumelhart et al., 1996). After this training process, we used the classifier
to evaluate a series of test patterns (single brain scans) that had not been
presented during classifier training. For most of the analyses reported
here, we selected voxels and trained the classifier using all 6 runs of
study-phase data, and then we applied the classifier to all 6 runs of test-
phase data. We also present the results of analyses where we selected
voxels and trained the classifier using data from 5 of 6 study-phase runs,
and then we applied the classifier to data from the sixth (“left out”)
study-phase run. Additional details regarding our MVPA analysis meth-
ods are provided in the supplemental materials, available at www.
jneurosci.org, including classifier “importance maps” that graphically
depict which voxels the classifier used to distinguish between the study
phase task conditions.

Logic of MVPA analyses. We focused our MVPA analyses on new-item
and incongruent test trials. For these analyses, we binned the task-
specific classifier outputs for each trial according to the role each task
played on that trial. For new-item trials, the classifier outputs were
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binned according to whether a particular task was the targeted task (TT)
on that trial or one of the other tasks (OT) on that trial. For incongruent-
item trials, the classifier outputs were binned according to whether a
particular task was the TT on that trial, the actual task (AT) that was
performed on that item at study, or the other task (OT). For example, if
subjects were asked Artist? but the item was originally studied using the
Function task, then TT � artist, AT � function, and OT � read. As
described below, the OT can be used as a baseline when measuring activ-
ity related to the targeted task and the actual task. Note that the mapping
of tasks (artist, function, read) onto conditions (TT, AT, and OT) varies
from trial to trial.

Our analysis procedure is founded on two key claims. The first claim is
that we can measure memory targeting by looking at the difference be-
tween TT and OT activity. We hypothesized that subjects would attempt
to constrain retrieval to the targeted task by performing the targeted task
on the test word (Jacoby et al., 2005a, 2005b), and that subjects would be
more prone to do this in the single-agenda (vs multiagenda) condition. If
this is the case, we should see a selective increase in TT activity relative to
OT activity, and this increase should be larger in Experiment 1 than in
Experiment 2.

The second claim is that, on incongruent trials, recollection of the
actual task should lead to an increase in AT activity relative to OT activity.
Prior research has established that recollection of memories from a par-
ticular source is associated with activation of source-specific patterns of
activity from the study phase (Nyberg et al., 2000; Wheeler et al., 2000;
Vaidya et al., 2002; Wheeler and Buckner, 2003; Kahn et al., 2004; Smith
et al., 2004; Johnson and Rugg, 2004, 2007; Woodruff et al., 2005). Thus,
in our exclusion paradigm, we would expect strong recollection of the
actual source on incongruent trials to be associated with strong AT ac-
tivity (relative to OT activity). Likewise, weak recollection of the actual
source should be associated with weak AT activity (relative to OT activ-
ity). Note that our MVPA approach to dissociating targeted-task versus
actual-task activity only works for incongruent trials. On congruent tri-
als, the targeted task and the actual task are the same, so there is no way to
tease apart activity relating to targeting versus recollection of the actual
source; as such, we did not include congruent trials in our analysis. Also,
we acknowledge that, in principle, other factors besides actual-task rec-
ollection could affect AT activity. For example, subjects might enact a
strategy of performing all three tasks at test, to see which one fits best with
the test word. A key point in this regard is that nonselectively performing
all three tasks will affect TT, AT, and OT activity equally, so this strategy
cannot be used to explain differences between TT and AT activity (on the
one hand) and OT activity (on the other).

Importantly, the idea that actual-task activity indexes recollection
makes it possible to assess the relationship between targeted-task activity
and recollection of the actual task. If targeting of one task reduces recol-
lection of other tasks, then – across incongruent trials – high levels of TT
activity (indicating strong constraint) should be associated with low lev-
els of AT activity (indicating low recollection of the actual task), resulting
in a negative correlation between TT and AT activity. We expected that
this negative correlation would be easier to observe in Experiment 1 than
in Experiment 2, insofar as we expected TT activity to be lower overall in
Experiment 2; this (anticipated) restriction in the range of TT should
reduce the size of the correlation.

The link between actual-task activity and recollection also makes it
possible to determine whether recollection of the actual (nontarget) task
is differentially used in single- and multiagenda source monitoring. The
key idea here is that AT recollection is not, on its own, sufficient to trigger
a correct rejection. AT recollection needs to happen early in the trial
(otherwise, subjects will not be able to respond before the 2-s deadline)

and, more importantly, subjects need to attend to this early trial recol-
lection to benefit from it (Johnson and Raye, 2000). We can measure how
strongly subjects are attending to AT recollection by measuring the rela-
tionship between early trial AT activity and behavioral accuracy. If sub-
jects are attending to AT recollection, high levels of AT activity early in
the trial (indicating that AT recollection occurred, and that it occurred
early enough to influence responding) should be associated with in-
creased correct rejections. If subjects are not attending to AT recollec-
tion, this relationship between early trial AT activity and correct rejec-
tions should be absent. We expected that subjects would devote more
scrutiny to AT recollection in the multiagenda test than in the single-
agenda test; as such, we predicted that the relationship between early trial
AT activity and behavior would be stronger in Experiment 2 than in
Experiment 1. Table 1 presents a summary of the predictions described
above.

Results
Classification of task-related activity during the study phase
All of our MVPA analyses depend on the idea that we can train a
classifier to successfully detect patterns of brain activity associ-
ated with performing the artist, function, and read encoding
tasks. To assess our ability to discriminate between task-specific
encoding states, we trained the classifier on study-phase data
from 5 of 6 scanner runs, and measured the classifier’s ability to
correctly predict (for each individual scan) which encoding task
the subject was performing on the remaining study run. The
correspondence between the classifier’s predictions and the ac-
tual encoding task (as indexed by correlation) was significantly
above chance for each individual subject. The average percentage
correct classification of individual brain volumes (chance �
33.3%) was 79.1% for Experiment 1 (SEM � 3.7%) and 73.9%
for Experiment 2 (SEM � 3.0%); classification accuracy was not
significantly different across experiments, t(21) � 1.10, p � 0.05.
For further details on study-phase classification, see the supple-
mental materials, available at www.jneurosci.org.

Classification of task-related activity at test
For all subsequent analyses, the classifier was trained on study-
phase data from all 6 scanner runs, and was applied to test-phase
data from all 6 scanner runs. For each new-item and incongruent
test trial, we measured the activity of each classifier output unit
(artist, function, and read) for 7 successive scans (lasting 2 s
each), starting with the scan when the test word was presented. As
discussed earlier, classifier outputs from new-item and
incongruent-item trials were binned according to whether that
task was the targeted task, the actual task performed on the item
at study, or the other task.

For all of the results presented below, dependent measures
(e.g., classifier output for a particular condition) were computed
separately for each individual subject. Figures and tables show the
mean and SEM (across subjects) of these per-subject measures.
We used two-tailed t tests (applied to these per-subject measures)
to assess whether effects were reliable across subjects.

Analysis of targeted-task activity
To evaluate our prediction that the amount of targeted task ac-
tivity would be higher in Experiment 1 versus Experiment 2, we

Table 1. Summary of predictions for single- and multiagenda source monitoring

Test type
Targeted-task
activation (TT– OT) Constraint (correlation between TT and AT) Relationship between AT and behavior

Single-agenda (Experiment 1) High Yes, negative correlation between TT and AT None
Multiagenda (Experiment 2) Low Negative correlation between TT and AT may be

curtailed by restriction in the range of TT
Positive (high levels of AT predict correct rejections)
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computed the average amount of TT activ-
ity in both studies. Figure 2A shows the
event-related classifier output averages for
both experiments. The left side of the fig-
ure plots average classifier output for TT
and OT on new-item trials, and the right
side of the figure plots average classifier
output for TT, AT, and OT on incongruent
trials. Figure 2B plots baseline-corrected
targeted-task activity (TT–OT) for new-item
trials and incongruent trials, as a function of
Experiment (1 vs 2). For all of the subplots in
Figure 2, classifier output is shown for 7 suc-
cessive scans, starting with the scan when the
test word was presented.

In Experiment 1, for both new-item
and incongruent trials, TT activity was sig-
nificantly higher than OT activity at mul-
tiple time points. This provides strong ev-
idence that subjects were activating the TT
representation at test. The supplemental
materials, available at www.jneurosci.org,
contain further analyses exploring the tim-
ing of TT activity. These additional analy-
ses, which control for “spill-over” of TT
activity from the preceding trial, demon-
strate that TT activity was triggered by the
test word, as opposed to the task cue that
preceded the test word; these timing re-
sults fit with the idea, mentioned earlier,
that TT activity reflects subjects perform-
ing the targeted task on the test word. In
Experiment 2, the TT–OT difference was
also significant for some time points, but
numerically the TT–OT difference scores
were smaller in Experiment 2 than in Ex-
periment 1. When we directly compared
TT–OT difference scores across experi-
ments, we found that the difference was
significant for incongruent trials at time
points 3 and 5, and the difference was sig-
nificant for new-item trials at time point 4;
when we combined new-item and incon-
gruent trials, the cross-experiment differ-
ence in TT–OT was significant at time
points 3, 4, and 5.

Analysis of the relationship between
targeted-task and actual-task activity
According to the encoding specificity
principle, TT activity should lead to re-
duced recollection of AT information on
incongruent trials. As a first-pass measure, we compared the
overall level of baseline-corrected AT activity (i.e., AT–OT) in the
two experiments; as discussed above, this difference score pro-
vides an index of the degree of AT recollection that is taking place
on incongruent trials. If TT activity suppresses AT recollection,
then AT activity should be lower in Experiment 1 (where TT
activity was relatively high) than in Experiment 2 (where TT
activity was relatively low). Contrary to this prediction, we found
that AT activity rose significantly above baseline in both experi-
ments, and that the level of baseline-corrected AT activity was
virtually identical across experiments (Fig. 2B, bottom).

To further investigate the relationship between TT and AT activ-
ity, we ran a more sensitive within-subjects analysis where we corre-
lated (across incongruent trials) the level of TT activity with the level
of AT activity. If TT activity suppresses AT recollection, then we
would expect to see a negative correlation within individual subjects
(assuming that there is adequate across-trial variability in TT activ-
ity). The TT–AT correlation was computed separately for each time
point (scan) in the trial, starting with the scan when the test word was
presented (e.g., we correlated TT activity at time point 1 with AT
activity at time point 1; we correlated TT activity at time point 2 with
AT activity at time point 2; and so on).
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Figure 2. Event-related averages of classifier output in Experiment 1 and Experiment 2. Classifier output is shown for 7
successive scans, starting with the scan when the test word was presented. The left side of the figure shows classifier output for
new-item trials, and the right side of the figure shows classifier output for incongruent-item trials. The graphs in A show raw
classifier outputs, and the graphs in B show difference scores (TT–OT and AT–OT). Error bars in B indicate the SEM (across subjects)
of the difference score. Individual bars marked with asterisks are significantly different from zero; pairs of bars marked with
asterisks are significantly different from each other. *p � 0.05; **p � 0.01.
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One complicating factor in this analysis is that classifiers can
register a negative correlation between cognitive states even if (at
a “process” level) the cognitive states are not related to each other.
Intuitively, the more that one pattern is present in the brain, the
less any other pattern will be present. With the neural network
classifiers that we are using, the process is not completely zero-
sum (i.e., it is possible to increase one classifier output without
reducing other outputs), but we commonly observe some degree
of negative correlation. To deal with this issue, we also computed
the correlation between the TT and OT classifier outputs; then we
subtracted out the TT–OT correlation from the TT–AT correla-
tion. This measure factors out the “baseline” level of negative
correlation (which should apply equally to TT–OT and TT–AT)
and makes it possible to test whether TT activity is more nega-
tively correlated with AT activity than with activity of the third
(irrelevant) task.

Figure 3 shows the average “corrected correlation value”
(across subjects) for each time point, for both Experiment 1 and
Experiment 2. After correcting for the TT–OT correlation, there
was a significant negative correlation between TT and AT activity
at multiple time points (4, 5, and 6) in Experiment 1. In contrast,
the correlation between TT and AT activity was not significant for
any time point in Experiment 2. These results fit with our predic-
tion that, when subjects attempt to constrain recall by activating
the targeted task, TT activity will reduce recall of memories from
other sources. The lack of a significant correlation for Experiment
2 can be explained in terms of the lower overall level of (baseline-
corrected) TT activity in that experiment, which effectively re-
stricts the range of TT and squelches the correlation. Impor-
tantly, the correlational nature of these results prevents us from
making strong causal inferences. The observed negative correla-
tion in Experiment 1 could be caused either by TT activity block-
ing AT recollection, or by AT recollection displacing TT activity
(intuitively, strong recollection of the actual task will make it
difficult to focus on the targeted task). The two possibilities are
not mutually exclusive, and it seems likely that both of these
situations occur to some extent.

Analysis of the relationship between actual-task activity
and behavior
The finding that AT activity was above-baseline in both exper-
iments allows us to look at how AT recollection affected be-
havior in Experiment 1 versus Experiment 2; as discussed ear-
lier, we can use the relationship between AT activity and
behavior on incongruent trials to assess the weight that sub-
jects are giving to AT recollection when making source mem-
ory decisions. Behavioral results for Experiments 1 and 2 are
presented in Tables 2 and 3, respectively (see the supplemental
materials, available at www.jneurosci.org, for additional be-
havioral analyses). As in previous comparisons of single-
agenda versus multiagenda tests (Lindsay and Johnson, 1989),
false alarms were higher in the single-agenda experiment; this
trend was significant for new items, t(21) � 2.28, p � 0.03, but
not for incongruent items, t(21) � 0.56, p � 0.05. To get an
overall sense of the relationship between AT activity and be-
havior, we plotted event-related averages of baseline-
corrected AT scores (i.e., AT–OT) for correct rejections and
errors, in both Experiment 1 and Experiment 2 (note that both
incorrect responses and failures to respond in time were
counted as errors). The results of these analyses are shown in
Figure 4 A.

We also used an area-under-the-receiver-operating-
characteristic-curve (AUC) measure (Fawcett, 2006) to sensi-
tively index how well AT activity discriminates between cor-
rect rejection and error trials. Specifically, the AUC measure
indexes the overlap between the observed distributions of AT
activity scores associated with correct rejections versus errors;
AUC provides extra information (beyond looking at means
and SDs) because it factors in the entire shape of the distribu-
tion. The AUC analysis was run separately for each time point
(scan) in the trial, starting with the scan when the test word
was presented. AUC scores range from 0 to 1, where 0.5 indi-
cates chance discrimination. AUC scores �0.5 indicate that
AT activity was associated with increased correct rejections,
and AUC scores �0.5 indicate that AT activity was associated
with increased errors. If subjects are using AT recollection
when making their source memory judgments, AUC scores
should be �0.5. Note that we used AT (alone) instead of
AT–OT as our trial-by-trial measure of recollection when
computing AUC. Subtracting out OT is valuable for demon-
strating that (on average) the actual task is activated more
strongly than the other task. However, when measuring recol-
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Figure 3. Correlation between TT and AT classifier activity (across incongruent trials) in
Experiment 1 and Experiment 2. Correlation values were computed separately for each time
point (scan) in the trial, starting with the scan when the test word was presented. TT–AT
correlation values were corrected by subtracting out the corresponding TT–OT correlation val-
ue; this corrected score indicates whether TT activity was more strongly correlated with AT
activity than OT activity. Error bars indicate the SEM (across subjects) of the corrected correlation
measure. Individual bars marked with asterisks are significantly different from zero. *p � 0.05;
**p � 0.01.

Table 2. Experiment 1: Mean proportions of trials where subjects responded �yes,�
responded �no,� or failed to respond in time as a function of trial type (congruent,
incongruent, and new)

Yes No Failed to respond

Congruent 0.69 (0.06) 0.15 (0.03) 0.16 (0.06)
Incongruent 0.09 (0.03) 0.77 (0.05) 0.14 (0.05)
New 0.06 (0.02) 0.83 (0.04) 0.12 (0.04)

Numbers in parentheses indicate SEM.

Table 3. Experiment 2: Mean proportion of trials where subjects responded �same
task,� responded �different task,� responded �new,� or failed to respond in time as
a function of trial type (congruent, incongruent, and new)

Same task Different task New Failed to respond

Congruent 0.50 (0.05) 0.11 (0.04) 0.05 (0.02) 0.35 (0.07)
Incongruent 0.07 (0.02) 0.48 (0.05) 0.08 (0.02) 0.37 (0.08)
New 0.01 (0.01) 0.07 (0.04) 0.57 (0.07) 0.35 (0.07)

Numbers in parentheses indicate SEM.
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lection on a trial-by-trial basis, subtract-
ing out OT adds noise relative to using
AT alone (since the proportion of OT
variance that is not shared with AT is
large, relative to the proportion of vari-
ance that is shared with AT). The AUC
scores for Experiments 1 and 2 are
shown in Figure 4 B.

The results of these analyses show
clear differences between Experiment 1
and Experiment 2. In Experiment 1,
there was an overall trend for AT activity
to be negatively associated with behav-
ioral accuracy: For all but one time
point, AT–OT was numerically higher
for errors than for correct rejections; this
trend was significant at the end of the
trial, at time point 6. In contrast, in Ex-
periment 2, early trial AT activity was
positively associated with behavioral ac-
curacy: AT–OT was significantly higher
for correct rejections than errors at time
point 2, and the AUC measure was sig-
nificantly �0.5 at this time point. When
we directly compared the AUC scores
from the two experiments, we found that
AUC scores were significantly higher for
Experiment 2 versus 1 (indicating a
more positive relationship between AT
activity and correct rejections) at time
points 2, 6, and 7.

To summarize, our key prediction re-
garding the relationship between AT activ-
ity and behavior was confirmed: Early trial
AT activity was associated with correct re-
jections in Experiment 2 but not Experi-
ment 1. The other main finding from this
analysis, the relationship between late-trial
AT and errors in Experiment 1, was unex-
pected, and merits further discussion. One
possible interpretation of this result is that subjects in Experiment
1 were treating recollection of any information (even AT infor-
mation) as evidence for the targeted task; for an example of how
subjects can misattribute retrieved information from one source
as evidence for another source, see Henkel et al. (2000). However,
the timing of the effect in Experiment 1 argues against this inter-
pretation: If AT recollection were actually causing errors, then we
would expect to see this effect early in the trial, but the association
between AT activity and errors was only present late in the trial
(�10 –12 s after stimulus onset). The timing of this effect suggests
that increased AT activity on error trials in Experiment 1 may
reflect postdecisional processing (i.e., subjects recalling and
thinking about the actual task after they made an error) as op-
posed to predecisional processing; informally, subjects often re-
ported that they would respond yes to an item on an incongruent
trial and then, immediately afterward, they would realize that the
item was from the wrong source (Van Zandt and Maldonado-
Molina, 2004). Errors in both experiments may be attributable to
factors that are “invisible” to the classifier (e.g., item familiarity)
as opposed to task-specific activity (for additional discussion of
this point, see the Limitations of our analysis procedure section
below).

Discussion
The goal of this study was to use neural data to gain psychological
insight into how subjects make source memory judgments when
they are asked to consider one source (single-agenda) versus
when they are asked to consider multiple sources (multiagenda).
Our first prediction was that subjects would be more likely to
perform the targeted encoding task at test given single-agenda
versus multiagenda instructions. Our MVPA results support this
prediction: Targeted-task activation was significantly higher (rel-
ative to baseline) in Experiment 1 than in Experiment 2. We also
hypothesized that activation of the targeted task would be asso-
ciated with reduced recollection of the actual task on incongruent
trials. Support for this claim was mixed: The level of actual-task
activation (relative to baseline) was similar across experiments
despite the difference in targeted-task activation. However, a
more sensitive within-subjects analysis revealed that TT and AT
activity were negatively correlated within individual subjects
(Fig. 3). Our final prediction was that subjects would make better
use of AT recollection on a multiagenda task, compared with a
single-agenda task. Our results support this prediction: In Exper-
iment 2, high levels of AT activation were associated with in-
creased correct rejections on incongruent trials, but this relation-
ship was not present in Experiment 1 (despite similar overall
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levels of AT activation). To our knowledge, this is the first dem-
onstration that subjects can retrieve diagnostic source informa-
tion but nonetheless fail to use this information when making
their source judgments.

The key methodological innovation underlying these findings
was our use of pattern classifiers to track the appearance of task-
specific activity during retrieval. As discussed earlier, MVPA in-
creases sensitivity to the comings and goings of cognitive states by
aggregating the information that is present in multiple voxels. This
increase in sensitivity allowed us to derive meaningful measures of
TT, AT and OT activity for each incongruent trial. Importantly,
these MVPA analyses should be viewed as complementing (not re-
placing) standard voxel-based General Linear Model analyses. While
MVPA is useful for addressing questions about what information is
present in the subject’s head at a particular point in time, whole-
brain MVPA analyses are less useful for mapping out which brain
regions are involved in particular cognitive processes (for a discus-
sion of pitfalls associated with using whole-brain MVPA for brain
mapping, see Norman et al., 2006). In the supplemental materials,
available at www.jneurosci.org, we present voxel-based analyses ex-
ploring which brain regions discriminate between different tasks at
study and which brain regions discriminate between correct versus
incorrect responses to incongruent items at test.

Relationship to previous neural studies of
agenda-dependent memory
Our results add to the growing body of neural evidence supporting
agenda-dependent memory, the idea that subjects’ goals at the time
of retrieval can impact what information comes to mind and how
subjects use this information (Mitchell et al., 2008; for examples of
relevant neuroimaging studies, see Johnson et al., 1997b; Ranganath
et al., 2000; Rugg and Wilding, 2000; Dobbins and Wagner, 2005;
Dobbins and Han, 2006; for reviews of relevant studies, see Rugg,
2004; Simons, 2009). To our knowledge, there has only been one
previous neuroimaging study that directly compared single-agenda
to multiagenda source monitoring: Raye et al. (2000) (Experiment
1C) compared a single-agenda test (“Was the item studied as a pic-
ture?”) to a multiagenda test (“Was the item studied as a picture or
studied auditorily?”) and found differences in frontal activity on the
two types of tests. This finding indicates that processing is different in
the two conditions but it does not indicate whether the difference
relates to memory cuing or to the evaluation of retrieved informa-
tion (or both).

While direct comparisons of single-agenda and multiagenda tests
are scarce, there have been numerous imaging studies that speak to
our hypotheses (set forth in the Introduction) about how subjects
approach single-agenda tests. For example, a recent study by Woo-
druff et al. (2006) used a single-agenda source memory test and, like
our study, found that subjects activate information relating to the
targeted source. In Woodruff et al. (2006), subjects studied picture
and word stimuli mixed together. At test, subjects were asked to
target items from a particular source (e.g., pictures). For each test
item, subjects were asked to say “yes” to items that were studied
using the targeted source, and to say “no” otherwise. Woodruff et al.
(2006) focused their fMRI analysis on new-item trials. They found
that brain activity on new-item trials differed as a function of
whether subjects were targeting picture versus word memories. Fur-
thermore, brain activity patterns associated with targeting picture
versus word memories were similar to brain activity patterns associ-
ated with studying pictures versus words, respectively (for a similar
result, see Hornberger et al., 2006).

Additional relevant evidence comes from single-agenda studies
that have compared ERPs on congruent and incongruent trials. Spe-

cifically, these studies have looked at the effect of retrieval orientation
on the parietal old/new ERP effect, an ERP correlate of recollection
(for discussion of this ERP effect, see Rugg et al., 2000; Rugg and
Curran, 2007). Many of these studies have found that the parietal
old/new effect is larger for congruent than for incongruent trials,
suggesting that subjects have some ability to prevent recollection of
information that mismatches the targeted source (Herron and Rugg,
2003a,b; Dzulkifli and Wilding, 2005; Herron and Wilding, 2005;
Dzulkifli et al., 2006; for similar results from a slightly different par-
adigm, see Dywan et al., 1998, 2001, 2002).

The fMRI and ERP studies reviewed in this section provide some
support for the idea that (on single-agenda tests) subjects attempt to
constrain retrieval to the targeted source: The fMRI studies found
activation of the targeted source, and the ERP studies found reduced
recollection of nontarget memories. However, these studies did not
address the relationship between activation of the targeted source
and recollection of nontarget memories. In our study, we were able
to address this relationship by simultaneously measuring targeted-
task activation and actual-task activation, and then correlating these
measures across trials. Also, the fMRI and ERP studies reviewed
above did not measure the relationship between recollection of non-
target memories and behavior. In our study, we demonstrated a
significant link between actual-task activity and behavioral accuracy
in Experiment 2 (but not in Experiment 1), and we used this link to
argue that subjects make better use of nontarget recollection in Ex-
periment 2 versus Experiment 1.

Limitations of our analysis procedure
Importantly, the classifier was trained to detect patterns of activity
that discriminate between the three tasks. This training procedure
gives the classifier the ability to detect recollection of task-specific
details, but it does not give the classifier the ability to detect recollec-
tion of nondiagnostic details (i.e., details shared by all three tasks) or
feelings of familiarity. For evidence that subjects are influenced by
nondiagnostic forms of memory on exclusion tests, see Dobbins and
McCarthy (2008). Another limitation of our analysis procedure is
that it focuses on activation (at test) of patterns from the study phase.
As such, the analysis procedure will not detect processes that are
engaged only at test (not at study).

Future directions
Our long-term goal is to exploit the sensitivity of MVPA to ex-
amine how memory cuing and decision-making processes vary
(across subject populations, and as a function of situational fac-
tors). For example, recent results from Jacoby et al. (2005b) and
Velanova et al. (2007) suggest that (on single-agenda tests with
tasks as sources) elderly adults are less likely than young adults to
perform the targeted task at test. Also, ERP studies have identified
several manipulations that affect how strongly subjects orient to
the targeted task, e.g., reducing the memorability of the targeted
source (Herron and Rugg, 2003a; Dzulkifli et al., 2006; but see
Herron and Wilding, 2005) and varying the targeted source un-
predictably from trial to trial at test (vs using a blocked design)
(Johnson and Rugg, 2006). We plan to explore these (and other)
factors using variants of the design used here.

Conclusions
Our MVPA approach provides a new kind of evidence regarding
how information is processed during memory retrieval. Using this
technique, we compared retrieval processing during single-agenda
(in Experiment 1) and multiagenda source monitoring (in Experi-
ment 2). We observed that single-agenda source monitoring is asso-
ciated with increased memory targeting and reduced use of retrieved
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diagnostic details. Going forward, the ability to separately track
targeted-task and actual-task activity should help us to develop more
nuanced theories of how subjects cue memory, how cues interact
with stored memory traces, how subjects make memory decisions,
and how these processes go awry in subjects with memory disorders.
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1. Multi-voxel pattern analysis methods 

 

As described in the main text, our multi-voxel pattern analysis (MVPA) analysis 

procedure was carried out on each subject separately, using fMRI data collected from the 

whole brain. The analysis procedure involved three steps: Voxel selection (to narrow 

down the number of voxels that are fed into the classifier), classifier training, and 



McDuff, Frankel, and Norman Supplemental Materials 2 

generalization testing.  In this section, we describe general aspects of our procedure 

relating to voxel selection and classification. In the next two sections (Section 2 and 

Section 3, below), we discuss specific details of how we used MVPA to analyze study-

phase and test-phase data.  

 

Voxel selection 

 

The goal of our voxel selection procedure was to isolate, for each subject, the voxels 

whose activity differed most strongly across the three encoding tasks at study (Polyn et 

al., 2005). For discussion of the benefits of doing voxel selection prior to classification, 

see Norman et al. (2006) and Mitchell et al. (2004).  To enact voxel selection, we ran a 

multiple regression analysis on data from the study phase using AFNI’s 3dDeconvolve 

program (for general discussion of AFNI, see Cox, 1996; for specific AFNI software 

routines, see http://afni.nimh.nih.gov/afni). In this analysis, we predicted each voxel’s 

time course using regressors corresponding to each of the three encoding tasks (artist, 

function, and read) plus six nuisance motion-correction parameter vectors that were 

generated by the AFNI motion correction algorithm, 3dvolreg. We created each encoding 

task regressor by first creating a “boxcar” regressor corresponding to the study-phase 

time points when a word was onscreen and the subject was performing the specified 

encoding task (e.g., artist) on the word. Then, to account for temporal dispersion in the 

hemodynamic response, we used AFNI’s waver function to convolve the boxcar 

regressors with a gamma-variate hemodynamic response function. For each voxel, we 

specified a set of three linear contrasts to test for differences in the beta-weights 
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associated with the artist, function, and read tasks (the contrast weights were 2 -1 -1, -1 2 

-1, and -1 -1 2). Finally, we computed the F-statistic for the combination of these three 

contrasts. This F-statistic indicates how strongly the voxel’s activity differed depending 

on whether subjects were performing artist vs. function vs. read encoding. 

Our voxel selection procedure involved taking, for each subject, the N voxels (out of 

approximately 50,000 total) that had the largest F statistic for that subject. These N 

voxels were then used in the pattern classification analyses for that subject. To select a 

value for N, we ran our study-phase classification analysis procedure (see Section 2 

below) using different numbers of voxels, and we chose the number of voxels that 

yielded the highest level of study-phase classification accuracy (i.e., accuracy in 

classifying which task subjects were performing at study, when the classifier was trained 

on other study trials). For simplicity, we decided to use the same number of voxels for all 

subjects, instead of individually tuning the number of voxels to maximize study-phase 

accuracy for each subject. Supplemental Figure 1 shows how study-phase classification 

accuracy (averaged across subjects from both Experiment 1 and Experiment 2) varied as 

a function of the number of voxels included in the analysis. The peak of this curve was 

1,000 voxels, so we set the number of voxels equal to 1,000 for all of our classification 

analyses. 

 

========================= 

Insert Supplemental Figure 1 About Here 

========================= 
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It is important to emphasize that our voxel selection procedure only used data from 

the study phase of the experiment; it did not factor in test phase data in any way. As such, 

the results of our train-on-study-phase, generalize-to-test-phase analyses (described in the 

main text and in Section 3 below) reflect the classifier’s ability to generalize to entirely 

new data that were not used for either voxel selection or classifier training.  

 

Neural network classifier 

  

Our classification analyses were implemented in MATLAB, using the Princeton 

MVPA Toolbox (http://www.csbmb.princeton.edu/mvpa) and the MATLAB Neural 

Networks Toolbox (Mathworks, Natick MA). The classification procedure was run 

separately for each subject. Before running the classifier, we z-scored the functional data 

separately for each voxel and each run (Polyn et al., 2005). We used a two-layer neural 

network classifier (i.e., input and output layers only; no hidden layer). There were 1,000 

units in the input layer, corresponding to the 1,000 voxels that passed through our GLM-

based voxel selection procedure for that subject.  The output layer contained three output 

units, one for each of the encoding tasks (artist, function, and read).  The network was 

purely feed-forward with full connections between the input and output layers, and a 

sigmoid transfer function was used on the output layer (Polyn et al., 2005). As in Polyn et 

al. (2005), the classifier was trained using the conjugate gradient descent version of the 

backpropagation algorithm, and a cross-entropy function was used to calculate prediction 

error during training (for further discussion of backpropagation see, e.g., Bishop, 1995; 

Duda et al., 2001; LeCun et al., 1998; Rumelhart et al., 1996).  
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Analysis procedure 

 

For all of our classification analyses, we divided up the fMRI data into a training set 

and a generalization testing set (see Section 2 and Section 3 below for description of the 

different ways in which we specified the training and testing sets).  First, we did voxel 

selection on the training set.  Next, we initialized the classifier weights to random values. 

After that, we trained the classifier on data from the study phase. Specifically, the 

classifier was given training patterns corresponding to individual study-phase brain scans 

(where one scan was collected every two seconds). For each scan, we clamped the pattern 

of voxel activity values from that scan onto the input layer. To specify the target 

(“correct”) output value for each study-phase pattern, we took the hemodynamically 

convolved task regressors described in the Voxel selection section above, rescaled the 

regressors into the zero-to-one range, and then binarized them such that values above 0.5 

were set to 1 and values below 0.5 were set to 0.  Time points where all three tasks had a 

target output value of zero (indicating that no task was strongly active at that time point) 

were not included in the classification analysis.  For all of the remaining time points, 

there was a single “correct answer” for each input pattern (i.e., one of the three output 

units had a target value of 1, and the other two output units had a target values of zero). 

Weights were updated after each training trial using backpropagation. 

After training, we used the network to classify individual brain scans from the 

generalization testing set. For each test pattern, we recorded the activity of each of the 

three output units. These activity values indicate how well the test pattern matches the 
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artist, function, and read brain states that were present in the training data set. To average 

out variability associated with random initial weight settings, we repeated this 

classification procedure 100 times, and we averaged together the classifier output values 

(for each test pattern) across these 100 classifier iterations. 

 

2. Study-phase classification analyses 

 

As discussed in the main text, all of our MVPA analyses depend on the idea that we 

can classify which task subjects are performing at study. To address this question, we 

used a leave-one-out generalization procedure where we took study-phase data from 5 out 

of the 6 functional runs and did voxel selection and classifier training on these five runs; 

we then applied the trained classifier to study-phase data from the sixth (“left out”) run.  

We iterated this procedure six times, leaving out a different run each time (see Hastie et 

al., 2001 for additional discussion of the leave-one-out procedure). 

 

Percent correct analyses 

 

We assessed the performance of the classifier by comparing the classifier’s response 

to the binary encoding task regressors described in the Analysis procedure section above. 

For each individual scan, we labeled that scan as being “correct” if the classifier output 

unit associated with the correct task was more active than the classifier output units 

associated with the other two tasks.  For each subject, we computed an overall percent 

correct value.  
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The significance of these percent correct values was assessed for each individual 

subject using a non-parametric statistical procedure; for a detailed description of this 

procedure, see the Supporting Online Material associated with Polyn et al (2005). We 

used a wavelet-based signal decomposition procedure to generate surrogate classifier 

output time-courses that had the same spectral characteristics as the original time-courses 

(Bullmore et al., 2001). For each of the actual classifier output time-courses (one per 

task), we computed ten thousand surrogate classifier output time-courses. These surrogate 

time-courses were used to create distributions of percent correct scores. By comparing 

the actual percent correct score to these distributions, we were able to generate a p value: 

the proportion of surrogate percent correct scores exceeding the percent correct score that 

was obtained in the experiment. These p-values indicate the probability that the observed 

percent correct score would have been obtained by chance (i.e., assuming that there was 

no real correspondence between classifier output and the task being performed).  

 

========================= 

Insert Supplemental Table 1 About Here 

========================= 

 

The scores in Supplemental Table 1 indicate that classification was significantly 

above chance (where chance = 1/3 = 33%) for every subject.  Note that these accuracy 

scores reflect a “best case” scenario, insofar as we tuned our voxel selection parameters 

to maximize average study-phase classification accuracy (see Section 1 above).  

However, we should note that classifier accuracy was reasonably robust to changes in the 
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number of selected voxels. Supplemental Figure 1 plots how classification accuracy 

(averaged across subjects from both experiments) varied as a function of the number of 

included voxels. The figure shows that including anywhere from 500 to 5000 voxels 

yielded near-peak average classification accuracy. The only time when classifier 

accuracy dipped far below its peak was in the 10-voxel condition (and classifier accuracy 

was still well above chance in this condition). 

 

3. Measuring activity at test  

 

To measure activation of task-specific study-phase patterns at test, we did voxel 

selection and trained the classifier based on study-phase data from all six runs. We then 

applied the trained classifier to test-phase data from all six runs. To analyze these results, 

we created event-related averages showing classifier output for new-item trials and 

incongruent trials.  For each new-item and incongruent test trial, we measured the activity 

of each classifier output unit (artist, function, and read) for 7 successive scans (lasting 2 

seconds each), starting with the scan when the test word was presented. For new-item 

trials, the classifier outputs were binned according to whether a particular task was the 

targeted task (TT) on that trial, or one of the other tasks (OT) on that trial.  For 

incongruent-item trials, the classifier outputs were binned according to whether a 

particular task was the targeted task (TT) on that trial, the actual task (AT) that was 

performed on that item at study, or the other task (OT).  Our primary analyses of these 

event-related averages are presented in the Results section of the main text. Here, we 

present extra analyses that address the timing of targeted-task activity. 
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Analyzing the timing of targeted-task activity 

 

In the main text, we hypothesized that subjects in Experiment 1 would attempt to 

constrain retrieval at test by performing the targeted task on the test word (for additional 

discussion of this idea, see Jacoby et al., 2005). This claim has strong implications for the 

timing of activation of the targeted task (TT). If we assume that TT activity commences 

when the test word is presented, and we assume that TT activity triggers a standard 

hemodynamic response, this implies that activation of the TT representation 

(operationalized in terms of the TT – OT difference) should start out at zero on the scan 

when the test word is presented, and that it should peak approximately three scans later.  

Contrary to this view, in Experiment 1, the TT – OT difference was significant for the 

scan when the test word was presented (time point 1 on the event-related averages) for 

both new-item and incongruent trials (this trend was also present, albeit to a lesser extent, 

in Experiment 2; see Figure 2 in the main paper). There are two possible explanations for 

this finding: One possibility is that subjects started to activate their TT representation in 

response to the task cue (e.g., “Artist?”), instead of waiting for the presentation of the test 

word. Another possibility relates to the fact that test trials were arranged into 3-trial 

miniblocks, where each trial in a miniblock used the same TT task. As such, TT activity 

at the outset of a trial could reflect “spill-over” of TT activity from the preceding trial.  

 

========================= 

Insert Supplemental Figure 2 About Here 
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========================= 

 

To eliminate the possibility of spill-over effects, we re-analyzed the data from new-

item and incongruent trials in Experiment 1, limiting the analysis to trials/conditions 

where neither the targeted task nor the other task served as the targeted task on the 

previous trial. This ensures that the TT – OT difference is uncontaminated by lingering 

TT activity. Limiting the analysis in this fashion involves discarding the second and third 

trials from each miniblock (since, as mentioned above, the targeted task on these trials 

was the same as the targeted task on the previous trial). It also involves discarding some 

fraction of the first-in-miniblock data, since the “other” task on these trials sometimes 

matched the targeted task on the previous trial. To compensate for this loss of data, we 

pooled together data from new-item and incongruent trials for this analysis (instead of 

analyzing new-item and incongruent trials separately). The results of this analysis are 

shown in Supplemental Figure 2.  The left-hand side of the figure shows an event-related 

average of classifier output, time-locked to the presentation of the test word (at time point 

1). The figure shows that, when the possibility of spill-over is eliminated, the TT – OT 

difference was very close to zero for time point 1 (the scan where the test word was 

presented), and the TT – OT difference peaked at time points 3, 4, and 5. The timing of 

this response fits with the idea, expressed above, that subjects activated the TT 

representation in response to the test word (not beforehand). The right-hand side of 

Supplemental Figure 2 shows an event-related average of classifier output, time-locked to 

the presentation of the task cue (at time point 1). As discussed in the Materials and 

Methods section of the main text, the task cue preceded the test word by either 2, 3, or 4 
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time points. The graph here collapses across these conditions, so the test word appeared 

at either time point 3, 4, or 5 on the graph. The figure illustrates that there is no event-

related TT activity response triggered by the task probe – TT activity does not start to 

appear until much later (after the test word has appeared).  

 

4. Group General Linear Model analysis: Task-specific study-phase activity 

 

Our finding of well-above-chance scan-by-scan classification of encoding task states 

(see Section 2 above) indicates that the three encoding tasks were associated with distinct 

patterns of neural activity. We ran two analyses aimed at characterizing which brain 

regions showed discriminative activity. In the first analysis (described in this section), we 

used a standard mass-univariate GLM analysis to identify brain regions whose activity 

reliably discriminated between the encoding tasks during the study phase.  In the second 

analysis (described in Section 5) we created classifier “importance maps” showing which 

voxels contributed most strongly to the classifier’s ability to detect the three task states. 

The GLM analysis and the importance-map analysis included subjects from both 

Experiment 1 and Experiment 2. 

The specific goal of the GLM multiple regression analysis described here was to 

identify clusters of voxels that (across subjects) were reliably more active or reliably less 

active during a particular encoding task at study, relative to the other two tasks.  The 

preprocessing steps and GLM regressors used in this analysis were identical to the 

parameters that we used for the GLM analyses described in the Voxel selection section. 

As with the voxel selection analyses, we ran the multiple regression analysis using 
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AFNI’s 3dDeconvolve program. The only differences between this analysis and the GLM 

used for voxel selection are as follows: 1) In this analysis, we report results at the group 

level, whereas voxel selection was done based on effects at the individual-subjects level; 

and 2) in this analysis, we report task-specific effects (i.e., for each task, which voxels 

showed differential activity for that task vs. the other tasks), whereas voxel selection was 

done based on the overall (main) effect of encoding task on voxel activity. 

The multiple regression analysis produced a set of beta weights indicating the extent 

to which a particular voxel’s activity correlated with a condition of interest for individual 

subjects.  Prior to running the group analysis, we warped these beta weights from each 

individual subject’s brain space into Talairach space (using AFNI’s program, @auto_tlrc) 

and smoothed them using a 4mm Gaussian blur (with AFNI’s program 3dmerge). To 

identify regions that were differentially activated (or deactivated) by a particular task at 

study, we conducted a 2-way ANOVA (using AFNI’s 3dANOVA2) on the beta weights 

from the study phase (encoding task: artist, function, and read).  We treated task (artist, 

function, read) as a fixed effect, and subject as a random effect.  As in our voxel selection 

procedure, we ran contrasts on the artist, function, and read beta weights to identify 

voxels that were differentially active during the different encoding tasks.  For example, 

the contrast weights used to specify voxels that were differentially active for the artist 

task (vs. the function and read tasks) were 2, -1, -1 for artist, function, and read.  

The ANOVA yielded contrast maps that showed the extent to which each individual 

voxel’s activity was differentially modulated by each encoding task at study.  We used 

these contrast maps to identify clusters of voxels whose activity (as a group) was 

differentially modulated by the artist, function, and read tasks, respectively.  To correct 
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for the problem of multiple comparisons, we used AFNI’s program AlphaSim to identify 

the number of contiguous voxels (the size of the cluster) necessary to reduce the 

probability of falsely detecting a cluster of that size to 0.001.  The clusters were chosen to 

include voxels whose contrast result was either positive or negative and exceeded t >5.68 

(p = 0.00001).  The volume of the cluster had to exceed 243 microliters with a minimum 

connectivity radius of 6 mm.  The clusters that were found using the above restrictions 

are reported in Supplemental Table 2.  Coordinates are reported in the Talairach-

Tournoux (T-T) Atlas coordinate space.  The focus point of each cluster is reported (LPI 

format).  The “direction of activation change” column indicates whether a particular 

cluster showed increased (+) or decreased (-) activity for the specified task, relative to 

the other two tasks. 

 

========================= 

Insert Supplemental Table 2 About Here 

========================= 

 

Given that the primary purpose of this paper is not to identify discriminative brain 

regions, we will not dwell on the results of this GLM analysis. Nonetheless, it is worth 

noting that our group GLM results appear to be consistent with the results of other fMRI 

studies that have used similar tasks. For example, numerous studies have observed left 

inferior frontal gyrus (LIFG) activity in tasks that require controlled retrieval from 

semantic memory and/or selection among multiple meanings (for a recent review, see 

Badre and Wagner, 2007). This fits well with our finding that LIFG was more active for 
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the function task (which places strong demands on controlled semantic retrieval and 

selection) than for the other two tasks (which place weaker demands on controlled 

semantic retrieval and selection).   

 

5.  Classifier importance maps 

 

A more direct way of gaining insight into how the classifier is discriminating between 

encoding tasks is to look at the classifier’s weights (after it has been trained on study-

phase data).  Specifically, we wanted to use classifier weight information to establish 

which voxels were most important in activating each task’s output unit, when that task 

was present.  For example, for scans associated with the artist task, which voxels played 

the largest role in (correctly) activating the artist unit? In our neural network classifier, 

the net contribution of a voxel to activating a task unit is a function of the voxel’s 

activation, multiplied by the weight between that voxel and the task unit. Logically 

speaking, there are two ways for a voxel to make a net positive contribution to activating 

a particular task unit:   

 

1) The voxel could have a positive z-scored average activation value (indicating that 

it was more active than usual) for scans associated with that task, and it could have a 

positive weight to that task unit.  Voxels meeting this criterion were assigned a positive 

importance value impij = wij * avgij, where wij is the weight between input unit i 

(corresponding to voxel i) and output unit j (corresponding to task j), and avgij is the 

average activation of input unit i while subjects were performing task j.  
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2) The voxel could have a negative z-scored average activation value (indicating that 

it was less active than usual) for scans associated with that task, and it could have a 

negative weight to that task unit. In this case, the “double negative” combination of 

negative activation and negative weight results in a net positive contribution.  Voxels 

meeting this criterion were assigned a negative importance value impij = -wij * avgij. 

 

Voxels where the sign of wij differed from the sign of avgij (indicating a net negative 

contribution of that voxel to detecting that task state) were assigned an importance value 

of zero.  Importance maps were computed using the above equations for each individual 

subject.  Crucially, note that (with these equations) both positive and negative importance 

values indicate a net positive contribution of that voxel to activating the task unit (when 

that task is present). The sign of the importance value indicates whether the voxel 

contributes via a characteristic deactivation that is picked up by the classifier (via a 

negative weight), or a characteristic activation that is picked up by the classifier (via a 

positive weight).  Computing importance values in this way makes it easier to compare 

importance maps to the GLM results discussed in Section 4 (which indicate, for each 

task/cluster combination, whether the cluster is more or less active for that task, 

compared to other tasks). Note that this procedure for computing importance values 

differs from the procedure used by Polyn et al. (2005), which measured whether each 

voxel i made a net positive or negative contribution to the activation of output unit j, but 

did not indicate whether voxels making net positive contributions did so because they 

were more or less active than usual during condition j.   
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After creating importance maps for each subject, these individual-subject importance 

maps were transformed to match a common template in Talairach space using AFNI’s 

automatic Talairaching functionality (@auto_tlrc).  We then used AFNI’s program 

3dmerge to apply a Gaussian blur with a full width at half maximum of 4mm to the 

Talairached importance maps for each individual subject.  This blurring makes it easier to 

identify commonalities in importance maps across subjects. To create group average 

importance maps, AFNI’s program 3dmerge was used to compute the mean importance 

value across all subjects for each voxel/task combination.  The structural image in 

Talairach space from subject 8 was used as an underlay for the montage, which was 

created with the AFNI software package. The resulting importance maps are shown in 

Supplemental Figure 3. 

 

========================= 

Insert Supplemental Figure 3 About Here 

========================= 

 

The importance maps reveal distinct patterns of activations and deactivations that 

(across subjects) were associated with each encoding task.  The regions labeled as 

important in Supplemental Figure 3 appear to be a superset of the regions identified by 

the GLM analysis (see Supplemental Table 2). The fact that regions found by the GLM 

appear in the classifier importance maps is not surprising, insofar as we used a GLM 

analysis to select which voxels were fed into the classifier for each subject.  The main 

difference between the classifier importance maps and the GLM clusters is that the 
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classification analysis is more liberal in choosing which voxels to include. In addition to 

incorporating significant “peak clusters”, the classifier maps also incorporate voxels that 

were in the “top 1000 voxels” for some subjects but (for whatever reason) did not reach 

conventional levels of significance in the group analysis.  For discussion of how 

classifiers benefit by accumulating weak information from voxels that do not meet 

conventional significance levels, see Norman et al. (2006), Haynes and Rees (2006), and 

Kamitani and Tong (2005).  

 

6.   Group General Linear Model analysis: Regions that predict correct rejections of 

incongruent items 

 

In the main paper, we used MVPA techniques to show that the amount of AT activity 

measured in Experiment 2 (during multi-agenda source monitoring) was related to the 

probability of correctly rejecting an incongruent item, but this relationship was not 

present in Experiment 1 (during single-agenda source monitoring).  In this section, we 

use a GLM analysis to explore whether there were any specific brain regions whose 

activity predicted correct rejections of incongruent items, and (if so) whether the 

relationship between activity and behavior in these regions interacted with our use of 

single-agenda vs. multi-agenda instructions. 

Towards this end, we ran GLM multiple regression analyses on Experiments 1 and 2 

separately to identify regions of the brain that discriminate between correct and incorrect 

responses on incongruent trials.  The preprocessing steps used in this analysis were 

identical to the parameters that we used for the GLM analyses described in Section 4 of 



McDuff, Frankel, and Norman Supplemental Materials 18 

this supplemental report (Group General Linear Model analysis: Task-specific study-

phase activity). As before, we ran the multiple regression analysis using AFNI’s 

3dDeconvolve program. We used all of the regressors that we used in the study-phase 

GLM analysis (i.e., regressors corresponding to each of the three encoding tasks, plus six 

nuisance motion-correction parameter vectors), and we also included six regressors 

specifying the different response types made during the test phase: correct and incorrect 

responses to incongruent items, correct and incorrect responses to congruent items, and 

correct and incorrect responses to new items. 

The multiple regression analysis produced a set of beta weights indicating the extent 

to which a particular voxel’s activity correlated with a condition of interest for individual 

subjects.  To identify regions that were differentially activated (or deactivated) by a 

particular response type at test, we conducted a 2-way ANOVA (using AFNI’s 

3dANOVA2) on the beta weights from the test phase (incongruent response type: correct 

and incorrect).  We treated response (correct, incorrect) as a fixed effect, and subject as a 

random effect.  We ran contrasts on the correct and incorrect beta weights to identify 

voxels that were differentially active when the subject made correct vs. incorrect 

judgments on incongruent trials.  

The ANOVA yielded contrast maps that showed the extent to which each individual 

voxel’s activity was differentially modulated by incongruent response type.  We used 

these contrast maps to identify clusters of voxels whose activity (as a group) was 

differentially modulated by the correct and incorrect responding.  The clusters were 

chosen to include voxels whose contrast result was either positive or negative and 

exceeded t >5.90 (p = 0.0001).  The three clusters that were found are reported in 
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Supplemental Table 3.  Coordinates are reported in the Talairach-Tournoux (T-T) Atlas 

coordinate space.  The focus point of each cluster is reported (LPI format).  The 

“direction of activation change” column indicates whether a particular cluster showed 

increased (+) or decreased (-) activity for the specified task, relative to the other two 

tasks. 

========================= 

Insert Supplemental Table 3 About Here 

========================= 

To follow up on these results, we took the peak voxels from each of the three clusters 

identified in the above analysis, and we ran an independent samples t-test comparing the 

individual subject beta weights from Experiment 1 vs. Experiment 2. The t-test revealed 

that the reported region in the hippocampus discriminated more strongly between correct 

and incorrect trials in Experiment 2 vs. Experiment 1, t(21) = 3.20, p < 0.01.  This result 

would not survive multiple-comparisons corrections, but it is suggestive of there being a 

difference in how hippocampal activity relates to behavior in Experiment 1 vs. 

Experiment 2. 

In summary: The results of this GLM analysis echo the results of our MVPA analysis. 

In both cases, we found brain activity that discriminates between correct and incorrect 

responding to incongruent items in Experiment 2 (multi-agenda source monitoring), but 

not Experiment 1 (single-agenda source monitoring).  Importantly, the GLM result is 

ambiguous when considered on its own: The fact that hippocampal activity was related to 

behavior in Experiment 2 does not tell us what subjects were remembering on those 

trials, or even if they are remembering anything (insofar as the hippocampus is activated 
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by encoding as well as retrieval; see, e.g., Stark and Squire, 2001).  The results of the 

MVPA analysis help to fill in these details:  Specifically, the MVPA analysis tells us that 

retrieval of information about the actual task performed on the item at study is driving 

correct rejections in Experiment 2 (but not in Experiment 1).  

 

7. Accuracy differences as a function of targeted task depth-of-processing 

 

========================= 

Insert Supplemental Tables 4 and 5 About Here 

========================= 

 

In this section, we explore how depth-of-processing of the targeted task affected 

subjects’ memory performance. Prior work by Marsh and Hicks (1998) and others (e.g., 

Dobbins and McCarthy, 2008) has demonstrated that – on exclusion tasks – subjects 

respond more accurately when they are asked to target deeply encoded items vs. 

shallowly encoded items. In the Marsh and Hicks (1998) study, subjects either targeted 

items they generated from anagrams (deep encoding) or items they read (shallow 

encoding). Subjects in that study showed a higher hit rate and a lower false alarm rate (on 

both incongruent trials and new-item trials) when asked to target the “generate” condition 

than the “read” condition. 

In our study, we can address the effects of targeting deeply vs. shallowly encoded 

items by comparing the target-artist condition (deep) to the target-read condition 

(shallow), or by comparing the target-function condition (deep) to the target-read 
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condition (shallow).  Supplemental Table 4 presents the behavioral results from 

Experiment 1, broken down according to which task was targeted at test (artist, function, 

or read). The overall pattern of results replicates the pattern observed by Marsh and Hicks 

(1998): For both comparisons (target-artist vs. target-read, and target-function vs. target-

read), hits were numerically greater for the deep condition than the shallow condition, 

and false alarms (on both incongruent trials and new-item trials) were numerically lower 

for the deep condition than the shallow condition.  Three of the aforementioned 

differences were significant at p < .05: artist hits > read hits; function incongruent false 

alarms < read incongruent false alarms; artist new-item false alarms < read new-item 

false alarms; the other differences had p values > .05. For discussion of how to interpret 

this pattern of results, see Dobbins and McCarthy (2008). 

Supplemental Table 5 shows the behavioral results from Experiment 2, broken down 

according to which task was targeted at test.  As in Experiment 1, artist hits (i.e., correct 

“same task” responses) were significantly greater than read hits in Experiment 2, t(11) = 

5.17, p < .01. There was a trend for function hits to be greater than read hits but it was not 

significant, t(11) = 1.65, p > .05.  In Experiment 2, there were no significant effects of 

depth of processing on false alarms to incongruent items (i.e., incorrect “same task” 

responses); neither artist nor function false alarms to incongruent items differed 

significantly from read false alarms. Likewise, there were no significant effects of depth 

of processing on false alarms to new items (i.e., incorrect “same task” responses); neither 

artist nor function false alarms to new items differed significantly from read false alarms. 

  

8. Accuracy differences as a function of actual task depth-of-processing 
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========================= 

Insert Supplemental Tables 6 and 7 About Here 

========================= 

========================= 

Insert Supplemental Figure 4 About Here 

========================= 

 

The previous section explored how depth-of-processing of the targeted task affected 

performance. This section explores how depth-of-processing of the actual task (on 

incongruent trials) affected performance. We expected that the effect of deep vs. shallow 

processing would depend on how well subjects were making use of retrieved information 

about the actual (non-target) task.  If subjects make proper use of actual-task recollection 

(i.e., they treat it as evidence that item was not studied with the targeted task), accuracy 

should be better for deep vs. shallow items; deep items are more likely to trigger actual-

task recollection (see Yonelinas, 2002 for a review), and thus will be more likely to 

trigger a correct rejection.  

Supplemental Table 6 shows the behavioral results for incongruent trials in 

Experiment 1, split by actual task.  Numerically, the data show a reversed depth-of-

processing effect: Accuracy was better for the (shallow) read task than the (deep) artist 

and function tasks.  The function vs. read difference was significant, t(10) = -2.90, p = 

0.02 but the artist vs. read difference was not, t(10) = -.81, p > .05.  This trend towards a 

reversed depth of processing effect suggests that subjects in Experiment 1 were not using 
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actual-task recollection to reject incongruent items (otherwise, the opposite pattern of 

results would have been observed).   

Supplemental Table 7 shows the behavioral results for incongruent trials in 

Experiment 2, split by actual task. In this study, there was a normal depth-of-processing 

effect: Accuracy was better for the (deep) artist and function tasks than the (shallow) read 

task. The artist vs. read difference was significant, t(11) = 3.46, p = 0.005 but the 

function vs. read difference was not, t(11) = 1.83, p = 0.09.  These results fit with the idea 

that subjects in Experiment 2 were utilizing actual-task recollection to (correctly) reject 

incongruent items.   

These depth-of-processing effects, coupled with the fact that AT classifier activity 

was much higher for deep vs. shallow tasks in Experiment 2 (average AT classifier 

activity was .57 for artist, .59 for function, and .35 for read at time point 2), suggest a 

possible confound: Insofar as deep tasks were associated with higher accuracy than 

shallow tasks, and deep tasks were also associated with higher AT activity, then the 

observed relationship between AT activity and accuracy in Experiment 2 (at time point 2) 

may reflect task differences in AT activity (i.e., deep tasks = high accuracy and high AT; 

shallow tasks = low accuracy and low AT) as opposed to a within-task relationship 

between AT activity and accuracy.  If this were the case, it would not contradict our 

hypothesis (insofar as it still shows a relationship between AT and accuracy), but it 

would compromise our claim that we can detect behaviorally meaningful differences in 

AT activity across trials (within conditions). 

To address the concern that depth-of-processing differences were driving our effect, 

we re-ran the Experiment 2 area-under-the-ROC (AUC) analysis, looking just at the trials 
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where the actual task was a deep encoding task (artist or function). Also, to avoid the 

possibility that differences between the two deep tasks might introduce a confound, we 

ran the analysis separately for “actual task = artist” and “actual task = function” trials and 

then averaged these results together (weighting them equally) for each subject.1 The 

results of this analysis are shown in Supplemental Figure 4, along with the results of our 

original AUC analysis from the main paper (Figure 4B) where we did not restrict by task.  

Importantly, the AUC scores were still just as large in the new analysis as in the original 

analysis (and AUC for time point 2 was still significantly above .5).  This finding 

indicates that, while there were AT differences across tasks, our ability to predict 

behavior using AT in Experiment 2 was not a simple artifact of task differences: We were 

still able to predict behavior when we focused just on AT variance that was present 

within the two deep-task conditions.2  

 

9. RT analyses 

 

========================= 

Insert Supplemental Table 8 About Here 

========================= 

                                                 
1 We were not able to run this analysis for Experiment 1 because the analysis requires at 
least one artist error and one function error per subject (otherwise AUC is undefined), 
and this was not the case for all of the subjects in Experiment 1. 
2 When we limited the analysis to “actual task = read” trials, we did not find a positive 
relationship between AT activation and correct rejections at time point 2. To the contrary, 
AT activation was nonsignificantly higher for errors than for correct rejections. This null 
effect may be attributable to a floor effect on AT recollection (and classifier activation) 
for the read task. Practically speaking, this finding suggests that researchers interested in 
showing a relationship between AT activation and behavior should focus on deep (as 
opposed to shallow) tasks.  
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Supplemental Table 8 shows reaction times as a function of response type and trial 

type (congruent, incongruent, and new) for both Experiment 1 and Experiment 2. Note 

that trials where subjects did not respond within the allotted 2 seconds were omitted from 

the RT analysis, since we did not record a response on these trials.  These RT results 

provide a source of converging evidence regarding subjects’ use (or lack of use) of 

actual-task recollection.  Several studies have found that scrutinizing retrieved 

information is a time-consuming process (see, e.g., Gronlund and Ratcliff, 1989; 

Hintzman and Curran, 1994; Rotello and Heit, 2000); subjects need to wait for 

recollected information to come to mind, and they need to compare recollected 

information with their representation of the target source. If subjects rely on this (slow) 

process to correctly reject familiar lures, this should slow down correct rejection RTs; in 

particular, it should differentially slow down correct rejection responses compared to hits 

(which can sometimes be triggered by fast familiarity, in addition to slower, more 

deliberative processes). RT data from Malmberg (2008) support this idea: Malmberg used 

an associative recognition paradigm where subjects were relying heavily on recollected 

information to reject familiar lures; in this study, he found that correct rejections of 

related lures were significantly slower than hits. 

The above results imply that we can use the RT difference between incongruent 

correct rejections (CRs) and hits to assess whether subjects are scrutinizing retrieved 

details: The more that subjects scrutinize retrieved details, the larger this RT difference 

should be.  In particular, the claim (from the main paper) that subjects are making use of 

recollected details in Experiment 2 but not Experiment 1 suggests that the (incongruent) 



McDuff, Frankel, and Norman Supplemental Materials 26 

CR – hit RT difference should be larger in Experiment 2 than in Experiment 1.  To test 

this hypothesis, we computed CR – hit RT difference scores for each subject in both 

experiments, and then we ran a t-test to see whether these difference scores were different 

across experiments.  Numerically, incongruent correct rejections were 57 msec slower 

than hits in Experiment 2, but correct rejections were 26 msec faster than hits in 

Experiment 1. As predicted, the CR – hit RT difference was significantly larger in 

Experiment 2 than in Experiment 1, t(23) = 2.08, p < .05.  This finding supports our 

hypothesis that subjects were scrutinizing retrieved details more carefully in Experiment 

2 vs. Experiment 1. 
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TABLES 

 

Supplemental Table 1 

 

Experiment 1: Study phase percent correct classification results, 1000 voxels 

Subject Percent Correct P Value 

1 84.96 < 0.0001 

2 78.75 < 0.0001 

3 56.43 < 0.0001 

4 57.07 < 0.0001 

5 79.69 < 0.0001 

6 88.74 < 0.0001 

7 92.99 < 0.0001 

8 83.79 < 0.0001 

9 84.70 < 0.0001 

10 88.73 < 0.0001 

11 74.62 < 0.0001 

 

Experiment 2: Study phase percent correct classification results, 1000 voxels 

Subject Percent Correct P Value 

1 80.01 < 0.0001 

2 77.17 < 0.0001 

3 85.37 < 0.0001 
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4 64.17 < 0.0001 

5 75.52 < 0.0001 

6 78.03 < 0.0001 

7 78.30 < 0.0001 

8 50.50 < 0.0001 

9 72.02 < 0.0001 

10 81.00 < 0.0001 

11 84.59 < 0.0001 

12 60.31 < 0.0001 
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Supplemental Table 2 

 

Voxel clusters differentially activated by the encoding tasks, as identified by the study-

phase group GLM analysis (using data from Experiment 1 and Experiment 2) 

Study 

Task 

L P I Volume # Voxels Direction of 

Activation 

Change 

Area 

Artist 31 

-27 

32 

-49 

-3 

-88 

-91 

-62 

-5 

1 

-4 

-10 

-26 

47 

60 

2160 

1836 

810 

729 

513 

80 

68 

30 

27 

19 

- 

- 

- 

- 

- 

R. Inferior Occipital Gyrus 

L. Inferior Occipital Gyrus 

R. Cerebellum 

L. Precentral Gyrus 

L. Medial Frontal Gyrus 

Function 22 

-10 

-47 

-5 

-45 

49 

-27 

-56 

-48 

-8 

-61 

-68 

49 

28 

9 

-43 

-59 

-69 

-16 

-67 

-77 

-40 

40 

40 

-1 

62 

43 

-15 

36 

-8 

-9 

-6 

0 

3321 

2511 

2430 

1971 

1728 

1323 

1242 

1080 

1053 

648 

648 

123 

93 

90 

73 

64 

49 

46 

40 

39 

24 

24 

- 

+ 

+ 

+ 

- 

- 

- 

+ 

- 

+ 

+ 

R. Precuneus 

L. Superior Frontal Gyrus (BA 8) 

L. Inferior Frontal Gyrus 

L. Superior Frontal Gyrus (BA 6) 

L. Inferior Parietal Lobule 

R. Fusiform Gyrus 

L. Precuneus 

L. Middle Temporal Gyrus (BA 21) 

L. Middle Occipital Gyrus (BA 19) 

L. Lingual Gyrus 

L. Middle Temporal Gyrus (BA 21/22) 
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-32 

-4 

44 

-44 

-52 

-53 

33 

-7 

-86 

49 

-0 

2 

-61 

1 

-84 

17 

0 

-1 

29 

54 

18 

35 

5 

42 

594 

540 

432 

432 

324 

324 

297 

270 

22 

20 

16 

16 

12 

12 

11 

10 

- 

+ 

- 

+ 

+ 

- 

- 

+ 

L. Middle Occipital Gyrus (BA 18) 

L. Anterior Cingulate 

R. Precentral Gyrus 

L. Middle Frontal Gyrus 

L. Superior Temporal Gyrus 

L. Precentral Gyrus 

R. Middle Occipital Gyrus 

L. Cingulate Gyrus 

Read 35 

-36 

24 

-34 

-50 

-11 

-33 

-4 

46 

-9 

-3 

-46 

40 

-76 

-82 

-66 

-58 

0 

52 

-59 

49 

0 

-75 

36 

28 

42 

-8 

-6 

41 

40 

31 

42 

-24 

-2 

29 

-8 

-6 

-5 

25 

8019 

7020 

6129 

4617 

1134 

945 

918 

864 

567 

324 

270 

243 

243 

297 

260 

227 

171 

42 

35 

34 

32 

21 

12 

10 

9 

9 

+ 

+ 

+ 

+ 

+ 

- 

+ 

- 

+ 

- 

- 

- 

+ 

R. Middle Occipital Gyrus 

L. Inferior Occipital Gyrus 

R. Precuneus 

L. Inferior Parietal Lobe 

L. Precentral Gyrus 

L. Superior Frontal Gyrus 

L. Culmen 

L. Anterior Cingulate (BA 10) 

R. Precentral Gyrus 

L. Lingual Gyrus 

L. Anterior Cingulate (BA 32) 

L. Inferior Frontal Gyrus 

R. Middle Frontal Gyrus 
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Supplemental Table 3 

 

Voxel clusters differentially activated by correct vs. incorrect responding to incongruent 

items, as identified by the test-phase group GLM analysis (described in Section 6). 

 

Exp L P I Volume # Voxels Direction of 

Activation 

Change 

Area 

1       (no clusters found) 

2 28 

-31 

-16 

-5 

-14 

-26 

-1 

2 

-18 

162 

108 

81 

6 

4 

3 

+ 

+ 

+ 

R. Lentiform Nucleus 

L. Lentiform Nucleus 

L. Hippocampus 
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Supplemental Table 4 

 

Experiment 1: Mean proportions of trials where subjects responded “yes,” responded 

“no,” or failed to respond in time as a function of trial type (congruent, incongruent, and 

new) and which task was targeted at test 

 

 Yes No Failed to Respond 

Congruent, Artist 

Congruent, Function 

Congruent, Read 

0.83 (0.05) 

0.69 (0.07)     

0.55 (0.08)        

0.07 (0.04)      

0.17 (0.05)          

0.20 (0.04)          

0.11 (0.04) 

0.14 (0.07) 

0.24 (0.07) 

Incongruent, Artist   

Incongruent, Function 

Incongruent, Read          

0.09 (0.03)        

0.07 (0.02)        

0.12 (0.03)        

0.77 (0.05) 

0.81 (0.05)  

0.71 (0.06)      

0.14 (0.05) 

0.12 (0.05) 

0.17 (0.05) 

New, Artist                     

New, Function 

New, Read 

0.03 (0.02)      

0.04 (0.02)  

0.10 (0.03)        

0.88 (0.04) 

0.87 (0.04) 

0.74 (0.06)          

0.10 (0.04) 

0.09 (0.04) 

0.17 (0.04) 

 

Note:  Numbers in parentheses indicate the standard error of the mean. 
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Supplemental Table 5 

 

Experiment 2: Mean proportion of trials where subjects responded “same task”, 

responded “different task”, responded “new”, or failed to respond in time as a function 

of trial type (congruent, incongruent, and new) and which task was targeted at test 

 

 Same Task Different Task New Failed to 

Respond 

Congruent, Artist 

Congruent, Function 

Congruent, Read 

0.68 (0.04) 

0.47 (0.07)    

0.34 (0.06)    

0.06 (0.02)     

0.13 (0.05)       

0.13 (0.05)       

0.02 (0.01) 

0.01 (0.01) 

0.11 (0.06) 

0.25 (0.05) 

0.39 (0.08) 

0.43 (0.08) 

Incongruent, Artist   

Incongruent, Function 

Incongruent, Read          

0.08 (0.02)    

0.07 (0.03)    

0.08 (0.03)    

0.43 (0.06) 

0.52 (0.06)  

0.50 (0.06)     

0.09 (0.02) 

0.09 (0.03) 

0.06 (0.02) 

0.40 (0.08) 

0.33 (0.07) 

0.37 (0.07) 

New, Artist                     

New, Function 

New, Read 

0.01 (0.01)    

0.01 (0.01)  

0.00 (0.00)    

0.07 (0.04) 

0.10 (0.06) 

0.05 (0.03)       

0.60 (0.07) 

0.56 (0.08) 

0.55 (0.08) 

0.31 (0.07) 

0.32 (0.08) 

0.40 (0.08) 

 

Note:  Numbers in parentheses indicate the standard error of the mean. 
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Supplemental Table 6 

 

Experiment 1: Mean proportions of incongruent trials where subjects responded “yes”, 

responded “no”, or failed to respond in time, as a function of the actual task performed 

on the test word at study. 

 

Actual Task Yes No Timeout 

Artist 0.09 (0.03) 0.78 (0.06) 0.13 (0.04) 

Function 0.14 (0.03) 0.70 (0.06) 0.16 (0.05) 

Read 0.05 (0.02) 0.81 (0.06) 0.14 (0.06) 

 

Note:  Numbers in parentheses indicate the standard error of the mean. 
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Supplemental Table 7 

 

Experiment 2: Mean proportions of incongruent trials where subjects responded “same 

task”, responded “different task”, responded “new”, or failed to respond in time, as a 

function of the actual task performed on the test word at study. 

 

Actual Task Same Task Different Task New Timeout 

Artist 0.07 (0.02) 0.59 (0.05) 0.03 (0.01) 0.30 (0.06) 

Function 0.09 (0.03) 0.48 (0.07) 0.06 (0.02) 0.37 (0.08) 

Read 0.06 (0.02) 0.37 (0.07) 0.14 (0.05) 0.43 (0.09) 

 

Note:  Numbers in parentheses indicate the standard error of the mean. 
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Supplemental Table 8 

 

Experiment 1: Mean reaction time in milliseconds, as a function of response (yes, no) and 

trial type (congruent, incongruent, and new) 

          

 Yes No 

Congruent 1367 (42) 1415 (74) 

Incongruent 1564 (49) 1341 (52) 

New 1593 (78) 1190 (53) 

 

Note:  Numbers in parentheses indicate the standard error of the mean. All 11 subjects 

contributed to each cell, except for the new/yes cell (where 9 subjects contributed). 

 

Experiment 2: Mean reaction time in milliseconds, as a function of response (same task, 

different task, new) and trial type (congruent, incongruent, and new) 

          

 Same Task Different Task New 

Congruent 1496 (40) 1549 (38) 1516 (62) 

Incongruent 1579 (55) 1553 (37) 1476 (39) 

New 1116 (395) 1651 (69) 1400 (52) 
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Note:  Numbers in parentheses indicate the standard error of the mean. All 12 subjects 

contributed to each cell, except for the following cells: congruent/new (7 subjects 

contributed), incongruent/new (10 subjects contributed), new/same (3 subjects 

contributed), and new/different (7 subjects contributed). 
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 FIGURE CAPTIONS 

 

Supplemental Figure 1: Plot showing how study-phase classification accuracy (averaged 

across subjects from Experiment 1 and Experiment 2) varied as a function of the number 

of voxels included in the classification analysis. Error bars indicate the SEM (across 

subjects) of the classification accuracy scores. See Section 1 for details of our voxel 

selection procedure, and see Section 2 for details of how we computed study-phase 

classification accuracy. Classification accuracy peaked at 1,000 voxels. Note that, for the 

range of values explored here, classification was well above chance (33%) regardless of 

how many voxels were selected. 

 

Supplemental Figure 2: Event-related averages of targeted-task (TT) and other-task (OT) 

classifier output from Experiment 1, after we factor out “spill-over” of TT activity from 

preceding trials. The plots include data from new-item trials and incongruent trials. To 

ensure that our measure of TT activity (on this trial) was not contaminated by TT activity 

from the preceding trial, these plots only include trials/conditions where the targeted task 

and the other task (on this trial) differed from the targeted task on the preceding trial. The 

left-hand side of the figure shows classifier output for 7 successive scans, starting with 

the scan when the test word was presented.  The right-hand side of the figure shows 

classifier output for 7 successive scans, starting with the scan when the task cue was 

presented (note that, on a given trial, the test word was presented either 2, 3, or 4 time 

points after the task cue). On both the left and the right, the upper graph shows raw 
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classifier outputs, and the lower graph shows TT – OT difference scores. Error bars on 

the lower graphs indicate the SEM (across subjects) of the difference score. Scores 

marked with asterisks are significantly different from zero; one asterisk indicates p < .05; 

two asterisks indicate p < .01.  

 

Supplemental Figure 3: Classifier importance maps, showing which voxels were used by 

the classifier to discriminate between the three tasks. Specifically, the three figures plot 

the average importance of each voxel for each task, where importance is a function of the 

weight connecting the voxel to the task unit, and the average activity of the voxel when 

the task is being performed (see Section 5 for details). Voxels can contribute to detecting 

a task state by having a positive (above-average) activation value for the task and a 

positive weight, or by having a negative (below-average) activation value for the task and 

a negative weight.  Voxels in the former category (positive activation, positive weight) 

were given a positive importance value equal to activation * weight. Voxels in the latter 

category (negative activation, negative weight) were given a negative importance value 

equal to – activation * weight.  The importance maps shown here were created by 

computing individual subject importance maps (for subjects from both Experiment 1 and 

Experiment 2), putting them in Talairach space, applying a 4mm Gaussian blur, and then 

averaging the maps together. Red patches indicate positive importance values and blue 

patches indicate negative importance values. The slices in each diagram (going from left-

to-right and top-to-bottom) correspond to Z = -12, -2, 8, 18, 28, 38, 48, 58, and 68. The 

underlay shows anatomical data from a single subject (subject 8, Experiment 1). 
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Supplemental Figure 4: Analysis of how actual-task activity relates to behavior on 

incongruent trials in Experiment 2. Area under the curve (AUC) scores > .5 indicate that 

AT activity at that time point is associated with increased correct rejections; for further 

explanation of the AUC measure see the main paper (Figure 4).  “All” = version of the 

analysis where we lumped all trials together (regardless of the identity of the actual task) 

– these results were shown in Figure 4 in the main paper.  “AF only” = version of the 

analysis where we computed AUC within the two deep tasks (artist and function) 

separately, and then averaged these results together. Scores marked with asterisks are 

significantly different from chance (.5) at p < .05. 
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