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Abstract

The stability–plasticity problem (i.e. how the brain incorporates new information into its model of the world, while at the same time preserving

existing knowledge) has been at the forefront of computational memory research for several decades. In this paper, we critically evaluate how well

the Complementary Learning Systems theory of hippocampo–cortical interactions addresses the stability–plasticity problem. We identify two

major challenges for the model: Finding a learning algorithm for cortex and hippocampus that enacts selective strengthening of weak memories,

and selective punishment of competing memories; and preventing catastrophic forgetting in the case of non-stationary environments (i.e. when

items are temporarily removed from the training set). We then discuss potential solutions to these problems: First, we describe a recently

developed learning algorithm that leverages neural oscillations to find weak parts of memories (so they can be strengthened) and strong

competitors (so they can be punished), and we show how this algorithm outperforms other learning algorithms (CPCA Hebbian learning and

Leabra at memorizing overlapping patterns. Second, we describe how autonomous re-activation of memories (separately in cortex and

hippocampus) during REM sleep, coupled with the oscillating learning algorithm, can reduce the rate of forgetting of input patterns that are no

longer present in the environment. We then present a simple demonstration of how this process can prevent catastrophic interference in an AB–AC

learning paradigm.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Stability–plasticity

Over the past several decades, neural theorists have

converged on the idea that neocortex implements an internal,

predictive model of the structure of the environment. This

internal model must simultaneously maintain previously

learned information and integrate new information. The

problem of how to accomplish these goals simultaneously in

a neural network architecture was labeled the stability–

plasticity dilemma by Carpenter and Grossberg (1988), and

this problem has come to occupy a central position in

computational neuroscience. The problem is hard to solve

because, in most neural network models, memory traces

overlap with one another. As such, learning new memories will

incrementally degrade pre-existing memories. Several
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researchers have found that, when new learning is extensive

(e.g. if the system has to memorize a new pattern based on a

single learning trial), neural networks can show near-complete

forgetting of pre-existing knowledge (catastrophic interfer-

ence; French, 1999; French, 2003; McCloskey & Cohen,

1989).

There have been several attempts to solve this problem, e.g.

Adaptive Resonance Theory (Carpenter & Grossberg, 2003]).

In this paper, we focus on another framework for addressing

stability–plasticity: The Complementary Learning Systems

(CLS) model (McClelland, McNaughton, & O’Reilly, 1995;

O’Reilly & Norman, 2002; O’Reilly & Rudy, 2001; Norman &

O’Reilly, 2003). This model posits that cortex solves stability–

plasticity with the assistance of a hippocampal system that can

rapidly memorize events and play them back to cortex in an

‘off-line’ fashion. In Section 1.2, we describe the basic

properties of CLS, and how it is meant to solve stability–

plasticity.

We also briefly review some of the many ways in which

CLS has been applied to episodic memory and animal learning

data. However, while CLS has proved to be a very useful way

for thinking about hippocampal and cortical learning

processes, in recent years we have identified some issues

with the model that we want to address:
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† The first issue involves finding a suitable algorithm for

adjusting synapses in cortex and the hippocampus. Some of

the learning algorithms that have been used in CLS

implementations (e.g. CPCA Hebbian learning: Norman

& O’Reilly, 2003; O’Reilly & Munakata, 2000) adjust

synapses more than is necessary and, as such, show

unacceptably high levels of interference. Other learning

rules that have been used in CLS implementations (e.g.

Leabra; O’Reilly & Munakata, 2000) are less prone to this

problem, but have other problems of their own (e.g. both

Leabra and CPCA Hebbian learning have difficulty in

modeling data on how competitors are punished during

retrieval).

† The second issue involves the problem of non-stationary

environments: What happens when patterns that were

originally in the training set are removed from the

training set? Even with the hippocampus and cortex

working together, the standard form of the CLS model

shows unacceptably high rates of forgetting of patterns

once they are removed from the training set. This

problem needs to be addressed before the CLS model

can be viewed as a complete solution to the stability–

plasticity problem.

In this paper, we present solutions to both of these problems:

† In section 2, we describe a new learning algorithm

developed by Norman, Newman, Detre, and Polyn (2005)

that leverages regular oscillations in feedback inhibition to

pinpoint weak parts of target memories (so they can be

strengthened) and to pinpoint non-target memories that

compete with target memories during retrieval (so they can

be weakened). We show that the oscillating learning

algorithm, applied to our cortical network, outperforms

both CPCA Hebbian learning and Leabra on a pattern

completion task. We also show that the oscillating learning

algorithm’s capacity for supporting familiarity discrimi-

nation greatly exceeds the capacity of the Hebbian cortical

model from Norman and O’Reilly (2003).

† In section 3, we show how the CLS model can be

supplemented by a new kind of off-line learning where

cortex and hippocampus separately rehearse stored mem-

ories, thereby repairing damage to these memories. We

argue that this off-line learning reflects the functionality of

REM sleep, and show that it can successfully prevent loss of

knowledge in an AB–AC interference paradigm (where AB

items are initially trained and then removed from the

training set).

In summary: We will present an account of how inhibitory

oscillations and off-line rehearsal of stored knowledge (during

REM sleep) can both improve learning and retention. The ideas

presented here apply to both hippocampus and cortex. For

simplicity’s sake, the simulations that we present will use the

cortical model, which has a less differentiated architecture than

the hippocampal model. After each simulation, we will discuss
ways in which the same mechanism can be applied to the

hippocampus.
1.2. Basic properties of CLS

The CLS framework (McClelland et al., 1995) incorporates

several widely-held ideas about hippocampal and neocortical

contributions to memory, that have been developed over many

years by many different researchers (e.g. Aggleton & Brown,

1999; Burgess & O’Keefe, 1996; Eichenbaum, Otto, & Cohen,

1994; Grossberg, 1976; Hasselmo & Wyble, 1997; Marr, 1971;

McNaughton & Morris, 1987; Moll & Miikkulainen, 1997;

O’Keefe & Nadel, 1978; Rolls, 1989; Scoville & Milner, 1957;

Sherry & Schacter, 1987; Squire, 1992; Sutherland & Rudy,

1989; Teyler & Discenna, 1986; Treves & Rolls, 1994; Wu,

Baxter, & Levy, 1996; Yonelinas, 2002). According to the CLS

framework, neocortex forms the substrate of our internal model

of the structure of the environment. In contrast, hippocampus is

specialized for rapidly and automatically memorizing patterns

of cortical activity, so they can be recalled later (based on

partial cues).

The CLS framework posits that neocortex learns incremen-

tally; each training trial results in relatively small adaptive

changes in synaptic weights. These small changes allow cortex

to gradually adjust its internal model of the environment in

response to new information. The other key property of

neocortical learning is that it assigns similar (overlapping)

representations to similar stimuli. Use of overlapping

representations allows cortex to represent the shared structure

of events, and therefore makes it possible for cortex to

generalize to novel stimuli based on their similarity to

previously experienced stimuli. In contrast, hippocampus is

biased to assign distinct, pattern separated representations to

stimuli, regardless of their similarity. This property allows

hippocampus to rapidly memorize arbitrary patterns of cortical

activity without suffering catastrophic levels of interference.
1.3. How CLS solves stability–plasticity

One of the key problems facing any account of stability–

plasticity is how to incorporate rare (but significant) events into

the cortical network. In the case of the CLS model, the

incremental nature of cortical learning means that it can only

retrieve memories if the stimulus is presented repeatedly.

However, infrequently-occurring events are sometimes very

significant (e.g. if a pterodactyl eats your sister) and we need to

be able to incorporate this information into our internal cortical

model of how the world works, so we can properly generalize

to new situations (e.g. future pterodactyl attacks). If the cortical

network were left to its own devices, a person would have to

experience several pterodactyl attacks before the cortical

memory trace was strong enough to support appropriate recall

and generalization. Furthermore, if the average interval

between pterodactyl appearances were sufficiently long, one

runs the risk that—in between appearances—interference from

other memories would erode the original memory, in which
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case the person would be back to where they started with each

new pterodactyl appearance.

The presence of the hippocampal network solves this

problem. The hippocampus is specialized for rapid memoriza-

tion; in a single trial, the hippocampus can latch on to pattern of

cortical activity elicited by the pterodactyl, and re-play it to

cortex repeatedly until it sinks in. In this respect, hippocampus

can be viewed as a ‘training trial multiplier’. Over time,

hippocampally-mediated replay of pterodactyl memories is

interleaved with bottom-up learning about information in the

environment. As discussed by McClelland et al. (1995), this

kind of interleaved training, coupled with a learning mechan-

ism that is sensitive to prediction error, forces cortex to develop

representations that reconcile the properties of rare events and

more common events (because this is the only way to avoid

prediction error across the entire training set).1
1.4. Applications of CLS to episodic memory and other

domains

CLS was originally formulated as a set of high-level

principles for understanding hippocampal and cortical contri-

butions to memory. More recently, O’Reilly and Rudy (2001)

and Norman and O’Reilly (2003) have developed working

neural network models of hippocampus and neocortex that

instantiate these principles, and these networks have been

applied to modeling specific datasets.
1.5. Modeling recognition memory

In one application, Norman and O’Reilly (2003)

implemented hippocampal and cortical networks that adhere

to CLS principles, and showed how these networks (taken

together) constitute a neural dual-process model of recognition

memory. Learning was implemented in these simulations using

a simple Hebbian rule (called instar learning by Grossberg,

1976, and CPCA Hebbian learning by O’Reilly & Munakata,

2000), whereby connections between active sending and

receiving neurons are strengthened, and connections between

active receiving neurons and inactive sending neurons are

weakened. Norman and O’Reilly (2003) showed how the

hippocampal model (using this simple Hebbian rule) can

support recognition via recollection of specific studied details.

The cortical model cannot support recollection of specific

details from once-presented events, owing to its relatively low

learning rate. However, Norman and O’Reilly (2003) showed

that cortex can still support judgments of familiarity after a
1 One could reasonably ask why we need to represent rare events in cortex,

given that hippocampus is capable of recalling these events after a single

training trial. The answer (according to CLS) is that, even though hippocampus

can support recall, it is not well suited to feature-based generalization. Thus, to

the extent that we want to generalize properly to similar events in the future

(e.g. different colors and sizes of pterodactyls appearing in different locations),

information about pterodactyls needs to be transferred from hippocampus to

cortex.
single study trial, based on the sharpness of representations in

cortex.

The cortical model’s ability to support familiarity discrimi-

nation is a simple consequence of Hebbian learning and

inhibitory competition. When a stimulus is presented, Hebbian

learning tunes a subset of the hidden units to respond more

strongly to that stimulus. As these units respond more and more

strongly to the stimulus, they start to inhibit other units. Thus,

the neural response to a stimulus transitions from a diffuse

overall response (where no units are tuned to respond strongly

to the stimulus) to a more focused response where some units

are strongly active and other units are suppressed. In the

Norman and O’Reilly (2003) paper, cortical familiarity was

operationalized in terms of the activation of the k most active

units in the hidden layer (where k is a model parameter that

defines the maximum number of units that are allowed to be

strongly active at once), although other methods of operatio-

nalizing familiarity are possible.

Norman and O’Reilly (2003) showed how, taken together,

the hippocampal network and cortical network could explain a

wide range of recognition findings, including data on when

hippocampal lesions affect recognition memory (as a function

of how similar distractors are to studied items, and as a function

of test format) and data from normal subjects on how

interference manipulations affect recognition memory (e.g.

list strength manipulations: how does repeatedly presenting

some items on the study list affect memory for other items on

the study list).

1.6. Modeling animal learning

In another application, O’Reilly and Rudy (2001) used

hippocampal and cortical networks instantiating CLS prin-

ciples to explain findings from animal learning paradigms,

including non-linear discrimination learning (e.g. negative

patterning, transverse patterning), ‘transitive inference’ in

discrimination learning, and contextual fear conditioning.

The models in these simulations were largely identical to the

models used in Norman and O’Reilly (2003), except the

simulations used O’Reilly’s Leabra learning rule instead of

CPCA Hebbian learning. Leabra combines CPCA Hebbian

learning with a simple form of error-driven learning (O’Reilly

& Munakata, 2000). The key finding from these simulations

was that cortex could solve non-linear discrimination problems

on its own when the animal is given repeated exposure to the

stimuli and appropriate feedback. In contrast, hippocampus is

needed to show sensitivity to feature conjunctions on tasks

where conjunctive learning is incidental (i.e. the animal does

not have to learn the conjunction to respond correctly on the

task) and the animal is given limited exposure to the

conjunction. O’Reilly and Rudy (2001) discuss several findings

that support the model’s predictions.

1.7. Problems with learning rules

Concrete applications of CLS (like those described in

Norman & O’Reilly, 2003 and O’Reilly & Rudy, 2001) have
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provided strong support for the validity of basic CLS principles

(see also O’Reilly & Norman, 2002). However, the process of

building working models that instantiate CLS principles has

also highlighted some important challenges for the CLS

framework.

One critical challenge is to develop a learning algorithm that

is capable of storing an appropriately large database of

knowledge (semantic knowledge, in the case of cortex, and

episodic knowledge, in the case of the hippocampus). Norman

and O’Reilly (2003) noted that the CPCA Hebbian learning

rule used in that paper has a tendency to over-focus on

prototypical features. When given a large set of correlated

input patterns to memorize, the CPCA Hebbian algorithm is

very good at learning what all of these patterns have in

common, but it shows very poor memory for specific, non-

prototypical features of individual items. This is less of a

problem for the hippocampal model than for the cortical model,

because of the hippocampal model’s ability to assign relatively

distinct representations to similar inputs. However, Norman

and O’Reilly (2003) noted that the hippocampal model is still

prone to ‘pattern separation collapse’ when given large

numbers of overlapping patterns. When this occurs, the

hippocampus recalls prototypical features in response to all

input patterns (studied or non-studied).

From a psychological-modeling perspective, the mere fact

that Hebbian learning over-focuses on prototypes is not

problematic. Good memory for prototypes can be used to

explain numerous categorization and memory phenomena (e.g.

false recognition of non-studied items from studied categories;

Koutstaal, Schacter, & Jackson, 1999). Also, as discussed by

Norman and O’Reilly (2003), the model’s tendency to forget

individuating features of studied items can be used to explain

memory interference effects on list learning paradigms.

However, the excessive degree of prototype-focusing

exhibited by the model is more problematic. When the model

is given a sufficiently large number of overlapping patterns,

both the hippocampal and cortical networks exhibit virtually no

memory for individuating features. In an important analysis,

Bogacz and Brown (2003) set out to quantify the capacity of

several different cortical models (including the Norman &

O’Reilly, 2003 Hebbian cortical network) for supporting

familiarity-based recognition: How many patterns can be

stored in the network, in a manner that supports discrimination

of studied vs. non-studied patterns? This analysis showed that,

given overlapping input patterns, the capacity of the Hebbian

cortical network from Norman and O’Reilly (2003) was very

poor. Even in a brain-sized version of the network, the model’s

capacity is almost certainly not large enough to account for

data on human recognition memory capacity (e.g. Standing,

1973) showed that people can discriminate between thousands

of studied vs. non-studied pictures, and this is an extremely

conservative estimate).

1.8. Why does CPCA Hebbian learning perform poorly?

The essence of the problem with CPCA Hebbian learning is

that it is insufficiently judicious in how it adjusts synaptic
strengths. In neural networks, each synaptic weight is involved

in storing multiple memories. As such, adjusting weights to

improve recall of one memory interferes with other memories

that are encoded in those weights. Given that there is a cost (in

terms of interference) as well as a benefit to adjusting synaptic

weights, it makes sense that strengthening of weights should

stop once the target memory is strong enough to support recall

and generalization. Likewise, learning algorithms should only

weaken non-target memories that are actively competing with

recall of the target memory. Any further strengthening (of the

target memory) or weakening (of non-target memories) will

cause interference without improving recall. CPCA Hebbian

learning fails on both counts: It strengthens synapses between

co-active units even if the target memory is already strong

enough to support recall, and it weakens synapses between

active receiving units and all sending units that are inactive at

the end of the trial, even if these units did not actively compete

with recall of the target memory.

In addition to being inefficient (from a functional

standpoint), CPCA Hebbian learning’s inability to selectively

weaken competing memories also impedes its ability to

account for empirical data on competitor punishment. Over

the past decade, several studies have found that memory

weakening is modulated by how strongly memories compete at

retrieval: Non-target memories that compete strongly with the

target memory (but subsequently lose the competition to be

retrieved) are punished. However, if steps are taken to mitigate

competition (e.g. by increasing the specificity of the retrieval

cue), there is no punishment (see Anderson, 2003 for a review

of these findings; see also Norman, Newman, & Detre, 2004 for

a computational model of these findings). This pattern of

results has been observed in both semantic memory tasks (e.g.

Blaxton & Neely, 1983) and episodic memory tasks (e.g.

Anderson & Bell, 2001; Ciranni & Shimamura, 1999),

suggesting that selective competitor punishment occurs in

both cortex and hippocampus. However, contrary to these

findings, CPCA Hebbian learning predicts that all memories

that overlap with the target memory should be weakened,

regardless of the amount of competition at retrieval.
1.9. Problems with Leabra

As mentioned earlier, some implementations of CLS (e.g.

O’Reilly & Rudy, 2001) have used O’Reilly’s Leabra learning

algorithm instead of CPCA Hebbian learning. Because of its

ability to learn based on pattern completion error, Leabra does

a much better job than CPCA Hebbian learning at retaining the

individuating features of studied items. However, as discussed

in Norman et al. (2004), Leabra lacks a mechanism for

selectively punishing memories that compete at retrieval. The

essence of this problem is that competitor activity is transient

(i.e. the competitor ‘pops up’ briefly and then goes away), but

Leabra is only equipped for learning about representations that

are active in the final settled state of the network. As such,

Leabra also fails to account for the competitor-punishment data

discussed above.
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1.10. Desiderata for a replacement algorithm

Because of the issues with CPCA Hebbian learning and

Leabra outlined above, we set out to derive a new learning

algorithm that meets the following two desiderata:

† Limits on strengthening: The network should only

strengthen memories when they are too weak to support

recall.

† Targeted punishment: The network should only weaken

memories when they actively compete with successful

recall of the target memory.

These properties, taken together, should reduce interference

in the cortical and hippocampal models. The second property

should help the networks account for data on competitor

punishment.
Input/Output

Fig. 1. Diagram of the network used in our simulations. Patterns were presented

to the lower part of the network (the input/output layer). The upper part of the

network (the hidden layer) was allowed to self-organize. Every unit in the

input/output layer was connected to every input/output unit (including itself)

and to every hidden unit via modifiable, symmetric weights.
2. The oscillating learning algorithm

To meet the desiderata outlined above, Norman et al. (2005)

developed a new learning algorithm that selectively strength-

ens weak parts of target memories (vs. parts that are already

strong), and selectively punishes strong competitors. The

learning algorithm accomplishes this goal by oscillating the

strength of feedback inhibition, and learning based on

the resulting changes in activation. In this section, we first

provide some background information on how inhibition was

implemented in the model, and how the network was

structured. We then provide a highlevel overview of how the

algorithm works. Finally, we present benchmark data (taken in

part from Norman et al., 2005) comparing the oscillating

learning algorithm to Leabra and CPCA Hebbian learning.
2.1. Background: how inhibition was implemented in the model

In the simulations described below, we used the simple two-

layer cortical network shown in Fig. 1. The network was

provided with patterns to memorize on the input/output layer,

and the hidden layer was free to self-organize. Every

input/output unit was connected to every input/output unit

(including itself) and to every hidden unit. Whenever a network

is recurrently connected in this manner, there has to be some

mechanism for limiting the spread of excitatory activity. In the

brain, this problem is solved by inhibitory interneurons, which

enforce a set point on the amount of excitatory activity within a

subregion (O’Reilly & Munakata, 2000). We capture this set

point dynamic in our model using a k-winners-take-all (kWTA)

inhibition rule, which adjusts inhibition such that the k units in

each layer that receive the most excitatory input are strongly

active, and all other units are at most weakly active (activity !
.25; Minai & Levy, 1994; O’Reilly & Munakata, 2000). We set

the input/output layer k equal to the number of units in each

studied pattern, such that (when kWTA is applied to the

network) the best-fitting memory—and only that memory—is

active.
2.2. Algorithm overview

The learning algorithm can be described in the following

five steps:

† First, the target pattern is soft-clamped onto the input/output

layer of the network. This soft-clamp is applied for the

duration of the trial. Given normal levels of inhibition, the

kWTA rule prevents activation from spreading to other

units in the input/output layer.

† Second, the algorithm identifies competitors by lowering

inhibition below the level specified by kWTA. Effectively,

lowering inhibition lowers the threshold amount of

excitation needed for a unit to become active. If a non-

target unit is just below threshold (i.e. it is receiving strong

input, but not quite enough to become active) lowering

inhibition will cause that unit to become active.

† Third, the algorithm weakens units that turn on when

inhibition is lowered (i.e. strong competitors) by reducing

weights from other active units. By doing this, the learning

algorithm ensures that a unit that competes on one trial will

receive less input the next time that cue is presented. If the

same cue is presented repeatedly, eventually the input to that

unit will diminish to the point where it no longer activates in

the low inhibition condition (so no further punishment

occurs). Norman et al. (2004) describe how this property

allows the model to simulate detailed patterns of behavioral

data on competitor-punishment.

† Fourth, the algorithm identifies weak parts of target

memories by raising inhibition above the level specified

by kWTA. If a target unit is receiving relatively little
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collateral support from other target units, such that its net

input is just above threshold, raising inhibition will trigger a

decrease in the activation of that unit.

† Fifth, the algorithm strengthens units that turn off when

inhibition is raised (i.e. weak target units) by increasing

weights from other active units. By doing this, the learning

algorithm ensures that a target unit that drops out on a given

trial will receive more input the next time that cue is

presented. If the same pattern is presented repeatedly,

eventually the input to that unit will increase to the point

where it no longer drops out in the high inhibition condition

(so no further strengthening occurs).
2.3. Algorithm details

The algorithm uses Contrastive Hebbian Learning (CHL;

Ackley, Hinton, & Sejnowski, 1985; Hinton, 1989; Hinton &

McClelland, 1988; Hinton & Sejnowski, 1986; Movellan,

1990) to enact the weight changes described above. CHL

involves contrasting a more desirable state of network activity

(the plus state) with a less desirable state of network activity

(the minus state). The CHL equation adjusts network weights

so that the more desirable state of network activity is more

likely to occur in the future. The following equation shows how

weight changes are computed by CHL:

dWij Z 3ððXC
i YC

j ÞKðXK
i YK

j ÞÞ (1)

In the above equation, Xi is the activation of the presynaptic

(sending) unit, Yj is the activation of the postsynaptic

(receiving) unit. The ‘C’ and ‘K’ superscripts refer to plus-

state and minus-state activity, respectively. dWij is the change

in weight between the sending and receiving units, and 3 is the

learning rate parameter.

The oscillating learning algorithm generates minus states by

varying inhibition around the level set by kWTA. When

inhibition is at its normal level (i.e. the level set by kWTA), all

of the target units (and only those units) will be active. This is

the maximally correct state of network activity. On each trial,

we distort this pattern by oscillating inhibition in a continuous

fashion from its normal level to lower-than-normal, then to

higher-than-normal, then back to normal, and we apply the

CHL equation to successive time steps of network activity. At

each point in the inhibitory oscillation, inhibition is either

moving toward its normal level (the ‘maximally correct’ state),

or it is moving away from this state. If inhibition is moving

toward its normal level, then the activity pattern at time tC1

will be more correct than the activity pattern at time t. In this

situation, we use the CHL equation to adapt weights to make

the pattern of activity at time t more like the pattern at time tC
1. However, if inhibition is moving away from its normal level,

then the activity pattern at time tC1 will be less correct than

the activity pattern at time t (it will either contain too much or

too little activity, relative to the target pattern). In this situation,

we use the CHL equation to adapt weights to make the pattern
of activity at time tC1 more like the pattern at time t. These

rules are formalized in Eqs. (2) and (3).

If inhibition is returning to its normal value:

dWij Z 3ððXiðt C1ÞYjðt C1ÞKðXiðtÞYjðtÞÞÞ (2)

If inhibition is moving away from its normal value:

dWij Z 3ððXiðtÞYjðtÞKðXiðt C1ÞYjðt C1ÞÞÞ (3)

For a detailed description of how the algorithm was

implemented, see Norman et al. (2005).

2.4. Relation to neural oscillations

Although the algorithm was not specifically developed as a

theory of neural oscillations, it nonetheless may help to explain

how neural oscillations contribute to learning. In particular,

theta oscillations (rhythmic changes in local field potential at a

frequency of approximately 4–8 Hz in humans) have several

properties that resonate with the learning algorithm proposed

here:

† Theta oscillations depend critically on changes in the firing

of inhibitory interneurons (Buzsaki, 2002; Toth, Freund, &

Miles, 1997).

† Theta oscillations have been observed in both of the major

CLS structures (cortex and hippocampus; for a review, see

Kahana, Seelig, & Madsen, 2001).

† Theta oscillations are fast enough to support several

complete oscillations per stimulus presentation, and slow

enough to allow competitors to activate when inhibition is

lowered.

† Theta oscillations have been linked to learning, in both

animal and human studies (e.g. Raghavachari et al., 2001).

Several studies have found that the direction of potentiation

(LTP vs. LTD) depends on the phase of theta (peak vs.

trough; Holscher, Anwyl, & Rowan, 1997; Huerta &

Lisman, 1996; Hyman, Wyble, Goyal, Rossi, & Hasselmo,

2003). This result mirrors the property of our model

whereby the high-inhibition phase of the oscillation is

primarily concerned with strengthening target memories

(LTP) and the low-inhibition phase of the oscillation is

primarily concerned with weakening competitors (LTD).

Given these facts, it seems possible to us that theta

oscillations may serve as the neural substrate of the algorithm

described here (Norman et al., 2005). However, at this point the

linkage is only suggestive, and needs to be confirmed through

further investigation.

2.5. Pattern completion simulations

To explore the oscillating algorithm’s ability to avoid

pattern separation failure and recall individuating features,

Norman et al. (2005) ran simulations comparing pattern

completion performance for the oscillating algorithm vs.

Leabra. In one set of simulations, Norman et al. (2005) gave

the network 200 binary input patterns to learn, with 57%
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average overlap between patterns. The network was repeatedly

presented with the 200-pattern set until learning reached

asymptote. At the end of training, pattern completion was

tested by measuring the network’s ability to recall a single,

non-prototypical feature from each pattern, given all of the

other features of that pattern as a retrieval cue.

Norman et al. (2005) were also interested in comparing the

robustness of the representations learned by each algorithm:

To what extent can these representations support retrieval

when test cues do not exactly match studied patterns? To get at

this issue, they distorted retrieval cues (by adding Gaussian

noise to the input pattern that was clamped onto the network)

and measured how pattern completion performance varied as a

function of the amount of test-pattern noise.

Fig. 2 shows the number of patterns (out of 200)

successfully recalled at the end of training by the oscillating

learning algorithm and Leabra, as a function of the amount of

noise applied to retrieval cues at test (Norman et al., 2005).

For comparison purposes, we have also included the results of

new simulations using CPCA Hebbian learning. In keeping

with the idea (stated earlier) that CPCA Hebbian has difficulty

in learning about non-prototypical features, this algorithm

performed very poorly, even for low levels of noise. Leabra

performed better than CPCA Hebb; this is because the error-

driven component of Leabra explicitly computes pattern

completion error at training, and adjusts weights to reduce

this error. When test noise was set to zero, Leabra and the

oscillating algorithm performed comparably. However, when

the models were given noisy test cues, the oscillating algorithm

performed much better than Leabra.

The oscillating learning algorithm outperforms Leabra in

this situation because the oscillating algorithm does a better job
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Fig. 2. Comparison of pattern completion performance for the oscillating

learning algorithm vs. other learning algorithms. The figure shows the number

of patterns (out of 200) successfully recalled at the end of training by each

algorithm, as a function of the amount of noise applied to retrieval cues at test;

the oscillating-algorithm and Leabra results are taken from Norman et al.

(2005). CPCA Hebbian learning performs very poorly. The oscillating learning

algorithm and Leabra perform comparably for low noise values, but the

oscillating algorithm performs much better than Leabra for noisy retrieval cues.
of maintaining pattern separation in the hidden layer: At the

end of training, the average pairwise similarity between

patterns in the hidden layer (measured using cosine) was .47

(SEMZ.02) for the oscillating algorithm vs. .65 (SEMZ.01)

for Leabra. The high level of hidden-layer overlap in the

Leabra simulations hurts recall by increasing the odds that

(given a noisy input pattern) the network will slip out of the

correct attractor into a neighboring attractor. The oscillating

learning algorithm manages to avoid these pattern-separation

difficulties because of its ability to punish competitors:

Whenever memories start to blend together, they also start to

compete with one another at retrieval, and the competitor-

punishment mechanism pushes them apart.

Crucially, even though pattern separation is higher for the

oscillating learning algorithm vs. Leabra, the oscillating

algorithm still learns similarity-based representations (i.e. it

assigns similar hidden representations to similar inputs). The

quantify this tendency, we computed a ‘similarity score’ that

tracks the correlation (across all pairs of patterns) between

input-layer similarity and hidden-layer similarity. The average

similarity score for the oscillating algorithm was .58 (SEMZ
.02), vs. .71 (SEMZ.04) for Leabra. Although the mean

similarity score for Leabra was higher, similarity scores for

Leabra were also much more variable: Across runs, some

scores were extremely high, and some scores were extremely

low. Approximately 10% of the Leabra similarity scores were

less than .1, indicating a near-total failure to represent the

structure of the input space. In contrast, only two runs of the

oscillating-algorithm model yielded similarity scores below .5,

and these scores (.35 and .45) still showed substantial

sensitivity to the structure of the input space.

Finally, the fact that oscillating algorithm learns similarity-

based representations (given a cortical network architecture)

highlights an essential difference between the pattern separ-

ation mechanisms that are built into the CLS hippocampal

model, and the pattern separation enacted by the oscillating

algorithm. As discussed earlier, the goal of hippocampal

pattern separation is to assign maximally distinct represen-

tations to stimuli, regardless of their similarity, so these stimuli

can be recalled in detail. The hippocampal model’s extreme

approach to pattern separation effectively cripples its ability to

generalize. In contrast, the oscillating algorithm is only

concerned that memories observe a ‘minimum separation’

from one another. So long as this constraint is met, memories in

the cortical network simulated here are free to overlap

according to their similarity (thereby allowing the network to

enact similarity-based generalization).

2.6. Familiarity discrimination: comparison with Hebbian

model

In addition to the pattern completion simulations described

in Norman et al. (2005), we have recently started to use the

oscillating algorithm to simulate familiarity-based recognition

in the cortical network. It is possible to read out a familiarity

score from the oscillating algorithm by looking at how

activation changes when inhibition is raised above its baseline
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Fig. 3. Comparison of familiarity discrimination using the oscillating learning

algorithm vs. the Norman and O’Reilly (2003) Hebbian cortical familiarity

model. For the Hebbian model, familiarity was operationalized using the

activation of winners measure from Norman and O’ Reilly (2003). For the

oscillating-algorithm model, familiarity was operationalized in two different

ways: activation of winners, and also the change in activation given high vs.

normal inhibition. Note that the oscillating-algorithm simulations used 40

hidden units, whereas the Hebbian simulations used 1920 hidden units (to

match the simulations from Norman & O’Reilly, 2003). Despite this large

disparity in hidden layer size, the oscillating-algorithm familiarity model

strongly outperformed the Hebbian model: Given 100 patterns (and 41%

average overlap between patterns), the asymptotic accuracy of the oscillating-

algorithm simulations was O99% for the change in activation measure and O
92% for the activation of winners measure, whereas the Hebbian model’s

asymptotic accuracy was close to chance.
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value: Weak (unfamiliar) memories show a larger decrease in

activation than strong (familiar) memories.

In new simulation work (not published elsewhere), we

have found that the capacity of the oscillating algorithm for

supporting familiarity discrimination is much higher than the

capacity of the Hebbian familiarity discrimination model used

by Norman and O’Reilly (2003). For example, in one

simulation we generated 200 patterns with 41% average

overlap. We trained the network by presenting 100 of the

patterns for 10 epochs. After each epoch of training, we tested

the network’s ability to discriminate between the 100 patterns

it studied, and the 100 patterns that it did not study. For the

oscillating-algorithm familiarity simulations, we used the

same network that we used in the pattern completion

simulations above (with 80 input units and 40 hidden units).

We compared the results of the oscillating-algorithm

simulations to the results of simulations using the feedforward

Hebbian model from Norman and O’Reilly (2003). The only

change to the Hebbian model as described in that paper is that

we used 80 input units instead of 240. The exact same input

patterns were presented to the oscillating-algorithm model and

the Hebbian model. The Hebbian model simulations oper-

ationalized familiarity using the activation of winners

Familiarity measure that was introduced by Norman and

O’Reilly (2003): familiarity is the average activation of the k

most active hidden units (where k is the activation limit

imposed by the k-winners-take-all inhibition rule). For the

oscillating-algorithm simulations, we used two different

familiarity measures. In one set of simulations, we indexed

familiarity in terms of the change in average activation (over

the entire input layer) given high vs. normal inhibition. Also,

to maximize comparability with the Hebbian simulations, we

ran another set of oscillating-algorithm simulations using the

activation of winners familiarity measure from Norman and

O’Reilly (2003).

The results of these simulations are shown in Fig. 3. The

Hebbian model performs just above chance after one epoch of

training, and actually gets slightly worse with additional

training. This result is robust to a wide range of parameter

settings, including hidden layer size—it appears that there is

simply no way to get the Hebbian model to show good

discrimination of patterns with this level of overlap. This is

because of the Hebbian model’s tendency to over-focus on

prototype features. In contrast, after 10 epochs, the oscillating

learning algorithm showedO92% accuracy in discriminating

between studied and non-studied patterns using the same

familiarity measure (activation of winners) that was used in the

Hebbian model. Asymptotic accuracy was even better (O99%)

when we used a familiarity measure (change in activation,

given high vs. normal inhibition) that was specifically tailored

to the oscillating algorithm. Although we have not yet carried

out the requisite mathematical analyses, we think it is quite

possible that the oscillating algorithm’s capacity for supporting

familiarity-based discrimination, in a brain-sized network, will

be large enough to account for the vast capacity of human

familiarity discrimination (as illustrated, e.g. by Standing,

1973).
2.7. Extending the oscillating algorithm to the hippocampal

model

The basic principles of the oscillating algorithm (regarding

how changes in the strength of inhibition can be used to

identify weak parts of target memories, and to flush out

competitors) should apply to the hippocampus just as well as

they apply to cortex. However, as discussed by Norman et al.

(2005), our ideas regarding the functional role of theta

oscillations differ from other published theories of how theta

contributes to hippocampal processing. Most prominently,

Hasselmo, Bodelon, and Wyble (2002) have argued that theta

oscillations help tune hippocampal dynamics for encoding vs.

retrieval, such that dynamics are optimized for encoding during

one phase of theta, and dynamics are optimized for retrieval

during another phase of theta. The Hasselmo et al. (2002)

model varies the relative strengths of different excitatory

projections as a function of theta (to foster encoding vs.

retrieval), but does not vary inhibition. Our impression is that

our oscillating algorithm and Hasselmo’s model are orthogonal

rather than contradictory. As such, we may be able to combine

the two models. One possibility would be to align the inhibitory

oscillation (from our model) and the oscillation in excitatory

projection strengths (from Hasselmo’s model) such that

inhibition is above-baseline during the ‘encoding’ phase of

theta and inhibition is below-baseline during the ‘retrieval’

phase of theta. As per our theory, learning would be based on

changes in activation triggered by changing inhibition. This
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method of lining up the oscillations has the useful property that

the oscillation phase primarily associated with memory

strengthening in our model (high inhibition) matches up with

the oscillation phase associated with LTP in the Hasselmo

model (‘encoding mode’), and the oscillation phase primarily

associated with competitor punishment in our model (low

inhibition) matches up with the oscillation phase associated

with LTD in the Hasselmo model (‘retrieval mode’). We will

explore the viability of this combined model in future research.
3. Model of memory protection during REM

The preceding section focused on problems with the

learning rules used by CLS models, and how these problems

might be addressed using the oscillating learning algorithm.

However, there are other, deeper issues with the CLS

framework that cannot be addressed simply by changing the

learning rule. In this section, we discuss the problem of non-

stationary environments: How does the network maintain a

representation of stimuli that temporarily drop out from the

training set? We discuss how existing CLS models fail to solve

this problem, and how this problem can be addressed by adding

a new kind of off-line learning that rehearses and protects

existing knowledge structures.2
3 The above argument is based on the idea that, as the person spends more

and more time in Antarctica, the ratio of Antarctica episodic memories to pre-

trip episodic memories will increase, resulting in proportionately less rehearsal

of pre-trip episodic memories. This prediction depends critically on the rules
3.1. Why we need two kinds of off-line learning

The original form of the Complementary Learning Systems

framework as proposed by McClelland et al., 1995 included a

single form of off-line learning in which hippocampus replayed

memories to cortex. The role of this off-line learning was to

allow the cortical model to incorporate information about rare

events. As discussed below, this framework works well when

the environment is stationary (i.e. the composition of the

training set does not change) but it fails to preserve existing

knowledge when the environment is not stationary. This point

can be illustrated by considering what happens to our

knowledge of typical birds after seeing a penguin. We will

consider two situations: the stationary environment case

(where the subject continues to see typical birds) and the

non-stationary environment case (where typical birds are

temporarily removed from the environment).

Penguin learning with a stationary environment. In this

case, the person sees typical (winged, feathery, flying) birds on

a regular basis during waking. One day, the person goes to the

zoo and sees a (winged, feathery, flightless) penguin. The next

day, the person returns to seeing typical birds. The original

CLS model learns about penguins by taking a hippocampal

‘snapshot’ of the penguin, and then re-playing this memory to

cortex. Hippocampal playback of ‘penguins do not fly’ will

incrementally degrade the network’s knowledge that (typi-

cally) birds fly. However, if the network continues to encounter

typical birds (with high frequency) during waking, learning
2 The simulation work described in this section was conducted as part of

Adler Perotte’s senior thesis research at Princeton University.
about these typical birds will repair the damage done by off-

line learning about penguins.

Penguin learning with a non-stationary environment. In this

case, the person sees typical birds on a regular basis during

waking. Then, the person takes a month-long trip to Antarctica

during which they only see penguins (never typical birds). In

this case, hippocampal playback of new penguin memories and

repeated environmental exposure to penguins will degrade the

network’s knowledge about typical birds. Because (in this

example) typical birds are not present in Antarctica, learning-

during-waking will not help repair the network’s knowledge.

The only possible source of support for typical birds in this

situation is hippocampal replay of ‘typical bird’ memories

from before the trip. However, as time passes, new information

will be encountered in Antarctica that will also require off-line

playback. Gradually, the probability that pre-trip information

will be replayed, relative to Antarctica memories, will become

extremely small. Ultimately, when neither the environment nor

the hippocampus provides cortex with additional exposure to

pre-trip information, it will fade from cortex.3
3.2. Lessons from the penguin example

The penguin example illustrates that (in the original form of

CLS) the environment is responsible for repairing damage to

existing knowledge. When existing knowledge continues to be

reinforced by stimuli in the environment, CLS does fine. But, if

the environment changes (such that existing knowledge is no

longer directly supported by the environment) then the network

will show high levels of interference.

The fact that the network shows some forgetting of typical

birds, in and of itself, is not damning: From a computational

perspective, it is appropriate to decrease the prominence of

flying (vs. flightless) birds in semantic memory if the base rate

of encountering flying birds decreases. However, the excessive

speed of forgetting exhibited by the CLS model (and other

models like it) is highly problematic. Taken literally, this

property of the CLS model would imply that a person who

regularly spends summers in Antarctica and the rest of the year

in New Jersey would forget everything about New Jersey when

they go to Antarctica, and vice-versa. To address the problem

of catastrophic forgetting in non-stationary environments, we

suggest that a second off-line learning mechanism is needed.

The role of the second mechanism would be to slow the rate of

erosion of pre-existing memories. This mechanism needs to be

able to strengthen memories in situations where they are not

being supported by the environment. In the next section, we

discuss how learning during REM sleep may help to protect
that govern which memories get replayed by the hippocampus. It is possible (in

principle) that one could devise a clever algorithm for hippocampal replay that

continues to give privileged status to pre-trip memories. However, in practice,

we are not sure how this goal could be accomplished.
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the Shiffrin and Steyvers (1997) REM model of recognition memory, which has

nothing to do with REM sleep.
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memories, and we present a neural network model of this

process.

3.3. Data on sleep and learning

The need for two distinct kinds of off-line learning

(hippocampal replay of new memories to cortex, and repair

of pre-existing memories, respectively) converges strongly

with recently acquired data on sleep and learning (for reviews,

see Gais & Born, 2004; Paller & Voss, 2004; Ribeiro &

Nicolelis, 2004; Stickgold, 1998; Walker & Stickgold, 2004).

These findings suggest that slow wave sleep (SWS) and REM

sleep contribute to learning in distinct ways: SWS may support

hippocampal replay of new memories to cortex, and REM may

support tuning of pre-existing cortical and hippocampal

representations. We briefly review the evidence for this linkage

below.

Evidence linking SWS to hippocampal replay. The strongest

evidence for hippocampal replay during SWS comes from

electrophysiological studies that have examined the relation-

ship between hippocampal activity in SWS vs. waking. Several

studies have found that patterns of neural activity observed

during waking events reappear in subsequent periods of sleep,

and this replay occurs more frequently in SWS than in REM

(see, e.g. Wilson & McNaughton, 1994 for evidence of replay

in SWS; but see Louie and Wilson, 2001 for evidence that

some replay occurs during REM; see Ribeiro et al., 2004 for a

direct comparison showing more replay in SWS than REM).

Other studies have found that, during SWS, hippocampal

replay of memories is coherent with cortical reactivation (Qin,

McNaughton, Skaggs, & Barnes, 1997). Also, sharp wave-

ripple activity in hippocampus has been shown to be

temporally correlated to sleep spindle oscillations in cortex

during SWS (Siapas & Wilson, 1998; Sirota, Scicsvari, Huhl,

& Buzsaki, 2003). Finally, Hasselmo (1999) observed that

acetylcholine levels in the hippocampus are lower during SWS

vs. waking and REM. Hasselmo (1999) goes on to describe

how low acetylcholine levels should facilitate retrieval of

stored hippocampal memories (e.g. by increasing the relative

strength of CA3 recurrents). Although there is much work to be

done in specifying the exact nature of the hippocampo–cortical

interaction during SWS, these findings are broadly consistent

with the idea that (during SWS) hippocampus is teaching

cortex about recent events. For additional discussion of this

point, see Buzsaki (1998); Gais and Born (2004); Hasselmo

(1999), and Sejnowski and Destexhe (2000); for computational

models of this process, see Alvarez and Squire (1994); Meeter

and Murre (in press).

Evidence linking REM to neural plasticity. There is

extensive evidence, both direct and indirect, suggesting that

REM sleep plays an important role in neural plasticity. For

example, theta oscillations, which have been correlated to

human memory formation (e.g. Sederberg, Kahana, Howard,

Donner, & Madsen, 2003), are prevalent during REM sleep

(Winson, 1993). On a cellular level, Ribeiro and Nicolelis

(2004) show that transcriptional factors, associated with the

formation of memories during waking, are up-regulated during
REM. Also, recent studies have found behavioral evidence that

directly relates REM to learning on non-declarative memory

tasks. For example, Smith, Nixon, and Nader (2004) found that

the number and density of rapid eye movements (REMs)

increased, relative to a control group, after subjects performed

difficult novel tasks (mirror tracing and tower of Hanoi).

Additionally, the number of REMs correlated with the degree

of improved performance following sleep.

Importantly, while several studies have found evidence for

hippocampo–cortical interactions during SWS, there is much

less evidence for hippocampo–cortical synchrony during REM.

For example, while theta oscillations are more prevalent in

REM than SWS, these oscillations are not synchronized

between hippocampus and cortex (Cantero, Atienza, Stickgold,

Kahana, Madsen and Kocsis, 2003). These results suggest that

REM involves separate learning processes occurring within

cortex and hippocampus, as opposed to transfer of information

from hippocampus to cortex (for additional discussion of how

REM could tune cortical representations, see, e.g. Hasselmo,

1999).
3.4. The REM sleep model

In this section, we provide a brief overview of our model of

REM sleep. Based on the data reviewed above, it seems safe to

conclude that some kind of learning occurs during REM.

However, it is not clear (based on this data) how REM achieves

the functional goal of repairing damaged memories. The goal

of the modeling work presented here is to bridge the gap, and

show (to a first approximation) how a process with the

physiological properties described above can support memory

protection and repair.4

The most critical functional properties of REM, as reviewed

above, are: (1) cortical neural activity is unaffected by

environmental stimuli and uncorrelated with hippocampal

activity, and (2) theta oscillations are prevalent. As such, we

have modeled REM sleep as a period in which the cortical and

hippocampal networks are dissociated from external input (and

from each other) and autonomously rehearse stored memories.

In keeping with the finding of strong theta activity during

REM, learning during REM in our model is guided by

inhibitory oscillations (as per the Oscillating Learning

Algorithm section above).

The simulation of REM sleep presented here uses a cortical

memory architecture. We discuss later how to re-integrate the

hippocampal network into the model. With respect to cortical

learning, we view REM as a period where cortex can ‘think

about what it already knows’, thereby reinforcing knowledge

that may no longer be supported by the environment or by the

hippocampus. In our model, we initiate REM rehearsal by

presenting the cortical network with a single noisy input and

allowing the network to activate a memory. Once the REM
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episode is initiated, no further input is given to the network.

During REM rehearsal, the network transitions from one

attractor state to another due to synaptic depression, which

temporarily weakens the active pattern.

The model’s ability to repair damaged memories depends

critically on non-linear attractor dynamics in the cortical

network. These attractor dynamics give the network the ability

to recall the intact version of a memory even if the synapses

underlying that memory have been disrupted. There are clearly

limits to this dynamic: After a certain amount of damage, the

memory will simply cease to exist as an attractor state in the

cortical network. However, there is a relatively large window

where disrupting the underlying synaptic substrate of a

memory does not compromise recall of the pattern. This is

analogous to a building where the support beams are crumbling

but the building is still standing. If the REM rehearsal process

succeeds in finding a memory in this state (i.e. where it can still

be recalled, but the synaptic substrate is weak), then the

memory can be repaired.

In our model, learning during REM uses the same

oscillation-based learning algorithm that was used in the

pattern completion and familiarity simulations presented

earlier. As memories are rehearsed, the model oscillates the

strength of inhibition, and changes weights based on changes in

activation triggered by these inhibitory oscillations. We

discussed earlier how raising inhibition allows us to ‘stress-

test’ a memory. If a memory is weak (because of damage

incurred during SWS or awake learning, or because of

inadequate training), it will show decreased activity when we

raise inhibition, which, in turn, will trigger learning processes

that strengthen the memory. At an intuitive level, one can think

of SWS and awake learning as ‘denting’ existing memories

(like you would dent a car) but not destroying them; REM

learning provides a way of repairing these dents. The second

component of the learning algorithm (weakening memories

that activate when inhibition is lowered) also plays a critical

role. This competitor punishment mechanism allows existing

memories to push away new memories that are encroaching on

their space. More generally, this mechanism works to ensure

that memories retain their individuating features and do not all

collapse together (a problem that affects other models of

memory consolidation; see the Preventing runaway consolida-

tion section for additional discussion of this point). The idea

that competitor punishment occurs during sleep also leads to

specific behavioral predictions regarding effects of sleep on

memory, as discussed in the Applications to specific findings

section below.

3.5. Simulation: AB–AC interference

We used a simple list learning paradigm to explore how

incorporating REM affects learning and forgetting in our

cortical model. In particular, we were interested in exploring

how REM affects learning in situations where the environment

is not stationary. The network architecture consisted of three

50-unit layers (input, output, and hidden). For this set of

simulations, the input layer was bidirectionally connected to
the hidden layer, and the hidden layer was bidirectionally

connected to the output layer; there were no recurrent

connections within layers. Inhibition was oscillated on the

input and output layers. The training patterns for our model

were created in the spirit of the McCloskey and Cohen (1989)

AB–AC model of catastrophic forgetting. The ‘AB’ list

consisted of 15 randomly generated input–output pairs. The

‘AC’ list was generated by taking each pattern from the AB list

and changing three units (out of 5) from both the input and

output patterns such that each new pattern was 40% similar to

the corresponding AB pattern. This high level of similarity

between the two lists made it difficult for the network to

maintain memories of the AB items as it learned the AC items.

The network was initially trained on the AB items to

criterion. Next, we started training the network on AC patterns.

For these trials, the AC pattern was presented directly to the

network. These AC trials can be viewed as a proxy for learning

occurring during waking and SWS. In the REM Sleep

condition, the network was allowed to do REM rehearsal

after each epoch of AC training. In the No REM Sleep

condition, the network was not allowed to do any REM

rehearsal in between AC epochs. After each epoch of AC

training, we tested the network’s memory for all of the AB and

AC patterns by presenting the input-layer pattern and

measuring the network’s ability to recall the corresponding

output-layer pattern (note that learning was turned off during

test trials, and inhibition was not oscillated at test). By

comparing the REM Sleep and No REM Sleep conditions, we

were able to explore how including REM affects retention of

AB items and learning of AC items.

3.6. Implementation of REM

Basic REM parameters. The learning parameters used

during REM were identical to the learning parameters used

during AB and AC learning, except for the fact that we used a

smaller inhibitory oscillation size during REM vs. AB and AC

learning. The most important difference between REM vs. AB

and AC learning is that external patterns were not applied to the

network during REM. Each REM episode was started by

initializing the activity values of the network to a random

value. After this initial burst of noise, the network was allowed

to autonomously generate patterns to rehearse. Each REM

episode lasted for 30,000 time steps. This value was selected

because it allowed the network to visit and repair enough

representations during REM to stabilize memories from the AB

list. The oscillating learning algorithm was run continuously

through the REM episode. Weight change values were

computed on a time-step-by-time-step basis during the REM

episode, but the weight changes were not actually implemented

until the end of the REM episode.

Preventing runaway consolidation. An important problem

that autonomous rehearsal mechanisms need to solve is

runaway consolidation (Ans & Rousset, 2000; Meeter, 2003;

Wittenberg, Sullivan, & Tsien, 2002). This problem arises

when some memories are stronger than others. When random

noise is injected into the system, the probability of recalling a
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Fig. 4. Graphs of how AC training affects memory for AB and AC items, both with and without REM. Each graph plots the number of AB and AC items correctly

recalled, after each epoch of AC training. The left-hand graph shows the model’s performance without REM. The right-hand graph shows the model’s performance

with REM. A comparison of the two figures shows that including REM episodes greatly reduces the forgetting of the AB items, at the cost of slightly slowing

acquisition of AC items.
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memory is a function of that memory’s strength. Thus, strong

memories are rehearsed more often than weak memories. This

leads to a positive feedback loop: Patterns that are rehearsed

become even stronger, which makes them even more likely to

be rehearsed in the future. This pattern of rehearsal leads to a

situation where a small number of memories become extremely

strong, and all other memories in the system become extremely

weak. Rehearsal algorithms that manifest this problem are

obviously unsuited for the task of preserving stored

knowledge.5

To prevent the network from repeatedly settling into the

same patterns, we implemented a synaptic depression

mechanism. This mechanism slowly reduces the efficacy of

connections between concurrently active units. As time

progresses, the active pattern tires and dissipates. When this

happens, other units activate and the network settles into a

new pattern. Once a depressed connection is no longer being

used, it begins to rebuild its strength. We selected a synaptic

depression mechanism that depends on both presynaptic and

postsynaptic activity, rather than a mechanism that depends

only on presynaptic activity (e.g. Huber & O’Reilly, 2003;

Gotts & Plaut, 2002), because the former mechanism is much

more specific in targeting the active memory. When

depression depends entirely on presynaptic activity, it will

generalize to all memories that share neurons with the active

memory, whereas depression that depends on presynaptic and

postsynaptic activity will only generalize to (the smaller set

of) memories that share synapses with the active memory.

Having said this, however, the basic pattern of results reported

in the next section does not depend on our use of the ‘postC
pre’ synaptic depression mechanism; the same qualitative

pattern was found when we used depression based on

presynaptic activity only.
5 To solve the problem of runaway consolidation, it is not necessary to

completely eliminate effects of memory strength on rehearsal. We suspect that

this is not possible, nor would it be desirable in light of behavioral data

suggesting that (during awake learning of word lists) strong items are rehearsed

more often than weak items (e.g. Ward, Woodward, Stevens, & Stinson, 2003).

Rather, the goal is to ensure that weak memories continue to be rehearsed, to a

degree that is sufficient to preserve these memories.
3.7. Learning with and without REM

The inclusion of the REM episodes after each epoch of AC

training greatly reduced the rate of forgetting of the AB items.

This can be seen in Fig. 4. Without REM, the average number

of AB patterns recalled dropped below 2 (out of 15) after 20

epochs of AC training. In contrast, with the inclusion of REM,

the network was able to retain more than 11 of the AB items

after 20 epochs of AC training. In addition to reducing

forgetting of AB items, REM also slowed down acquisition of

AC items. The network was able to learn all 15 AC patterns

both with REM and without REM, but this process took

approximately 12 epochs of training with REM, vs. 6 epochs

without REM. The slower pace of learning with REM reflects

the fact that weaving new memories in with old memories

(without destroying the old memories) is a more demanding

process than simply letting the new memories overwrite the old

memories. In the former case, the network has to shuffle around

representations to make room for both AB and AC memories,

whereas in the latter case the network can simply re-use the

same set of neurons. Because REM model learned the same

number of AC memories and retained more AB memories, the

total number of patterns stored in the network at the end of

training was larger with REM than without REM (26 vs. 16).
3.8. REM discussion

In summary: Adding ‘REM sleep’ periods to the McClel-

land et al. (1995) Complementary Learning Systems model

significantly reduces the amount of forgetting. In this section,

we briefly review how our model relates to other theoretical

accounts of memory protection, and we discuss future

directions for the model.
3.9. Relation to other computational models of memory

protection

Our model of how REM preserves memories can be viewed

as a descendant of models proposed by French (1997) and Ans

and Rousset (1997), and later by Ans and Rousset (2000).
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These studies pioneered the use of random noise to elicit (and

then learn about) stored memory patterns (see also Wittenberg

et al., 2002). The main difference between our model of

cortical memory preservation and the Ans and Rousset (2000)

model is that Ans and Rousset (2000) use two networks (with

basically identical properties) to implement cortical memory

preservation, whereas our model uses a single, unified network.

The second network in their model maintains pristine copies of

older memories, which the first network can subsequently use

to repair representations that were damaged in new learning.

The primary contribution of our work is to show that damage

caused by new learning can be repaired without consulting an

undamaged copy of the knowledge base. As discussed above,

our scheme exploits the fact that—when synaptic weights have

been disrupted by a relatively small amount—it is still possible

to retrieve the memory in its original form. Thus, so long as the

damaged memory is located (during REM rehearsal) before it

becomes unrecallable, it can be repaired. This allows us to

dispense with the neurobiologically implausible ‘second

cortical network’ posited by Ans and Rousset (2000).

Other solutions to the stability–plasticity problem, such as

Carpenter and Grossberg’s Adaptive Resonance Theory (ART;

Carpenter & Grossberg, 1988, 2002, 2003), do not require off-

line learning. ART avoids catastrophic interference by gating

when learning occurs. The gating mechanism prevents learning

when the current pattern differs too much from top-down

expectations (and, thus, learning the current pattern would

significantly alter these top-down expectations). Although it is

impressive that ART does not require off-line learning, this

functional strength can also be viewed as an explanatory

shortcoming: Because ART does not need off-line learning, it

does not provide a natural explanation for data showing that

off-line learning (during sleep) actually occurs.

One other model of note is the cortico–hippocampal model

published by Kali and Dayan (2004). In this paper, Kali and

Dayan (2004) present simulations showing that hippocampal

replay alone (in the absence of an extra ‘memory protection’

process) can help to preserve semantic memories after the

statistics of the training environment change. On the surface,

this result appears to be inconsistent with our claim that an

extra memory protection process is required to fully address the

catastrophic interference problem. However, the utility of

the Kali and Dayan (2004) model (with regard to solving the

catastrophic interference problem) is compromised by two

issues. First, the simulations presented in Kali and Dayan

(2004) only explore the effect of subsequent cortical learning

on memory storage, not the effect of subsequent hippocampal

learning (specifically: no new hippocampal memories are

formed after the statistics of the training environment change).

Furthermore, the hippocampal component of the model is not

explicitly simulated, so they cannot explore the possibility that

new hippocampal memories might distort previously stored

hippocampal memories. We suspect that updating the Kali and

Dayan (2004) model to address these issues (by adding new

episodic learning after the training environment changes,

and allowing for the possibility of interference within
the hippocampus) would greatly compromise their model’s

ability to preserve stored semantic knowledge.

3.10. Future directions

In this section, we have provided a simple demonstration of

how adding a ‘REM sleep’ mechanism to CLS can help to

minimize interference. That said, there is a great deal of work

that remains to be done in understanding the neural

mechanisms that support off-line learning (and their functional

consequences). In this section, we describe ways in which the

model can be refined and extended, and ways in which the

model can be applied to specific sleep and learning findings.

Re-integrating the hippocampal model. Having demon-

strated the basic properties and feasibility of the REM memory

protection mechanism (as applied to cortex), the next logical

step is to add the hippocampal network from Norman and

O’Reilly (2003) back into the model. Re-integrating the

hippocampal model would allow us to explicitly model

waking, SWS, and REM sleep. During waking, the hippo-

campus would learn with a very high learning rate, and cortex

would learn with a much smaller learning rate (as per basic

CLS principles). During SWS, the hippocampal network would

recall memories acquired during the waking state through a

random settling process (similar to that used during REM in the

cortical model), and cortex would learn based on these

hippocampal training trials. As per the ideas described in

Hasselmo (1999), we would adjust modulatory parameters in

the hippocampal model to facilitate retrieval during SWS (vs.

encoding during waking and REM). The model would be

configured to stay in SWS long enough to sample recently

acquired hippocampal memories, but not so long that SWS

destroys the attractor network of the cortical model. After

SWS, we would implement the REM memory protection

process in both the cortex and the hippocampus independently.

Although we used a cortical architecture in the simulations

described above, the same basic principles of autonomous re-

activation and strengthening can also be applied to the

hippocampal model. As mentioned earlier, although there is

less overlap between memories in hippocampus vs. cortex,

there is still some overlap, which leads to interference. If

enough interference builds up, this could prevent the

hippocampus from fulfilling its job of conveying recent

memories to cortex during SWS. As such, the hippocampus

(like cortex) stands to benefit from the memory protection

mechanisms discussed in this section.

Targeting damaged memories. In the REM simulation

presented in this paper, the REM rehearsal process was able to

sample (almost) all of the AB traces because there were only 15

of these traces. In a brain-size network, with thousands (or

millions) of attractor states, this kind of exhaustive sampling is

not possible. In this situation, the REM rehearsal process needs

to be able to selectively sample the relatively small set of

memories that have suffered the most damage during SWS.

A major future direction for the REM model is to explore

mechanisms that will promote selective sampling of damaged

(vs. non-damaged) memories.
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There are a number of potential solutions to this problem.

One possibility is to incorporate a weak influence of the

hippocampus during the process of REM. According to this

view, the hippocampal network would continue to recall

memories, but (unlike SWS) this hippocampal influence would

not be strong enough to force a pattern of activity on the

cortical network. Rather, its influence on cortex would serve to

weakly guide activity to the areas of attractor space that were

visited during SWS (and, therefore, were most likely to have

been damaged). The weak hippocampal input would trigger re-

activation of cortical attractors in the ‘damaged’ areas, thereby

making it possible to repair these attractors. Another, related

possibility (which does not require hippocampo–cortical

interactions during REM) would be to apply a hysteresis

algorithm to units visited during SWS. This hysteresis

algorithm would enact a temporary increase in the efficacy of

neurons and/or synapses that were activated during SWS. If

hysteresis carried over (from SWS) into the following REM

phase, it would serve to guide the cortical network to regions of

attractor space that were visited during SWS.

One possible issue with both the ‘weak hippocampal

influence’ and ‘hysteresis’ ideas is that, by guiding cortex to

regions of attractor space visited during SWS, these mechan-

isms may foster additional strengthening of new memory

traces, as opposed to repair of old memory traces. However, we

do not think this is a major concern, for two reasons: First, if a

memory is truly new, then its cortical memory trace will be

weaker than the cortical memory traces of pre-existing

memories, so cortex will be more likely to rehearse the pre-

existing memories. Second, even if the network does rehearse

new memories (to some extent) during REM, eventually these

memories will tire out due to synaptic depression. If the

network stays focused on the same region of attractor space

(and new memories are depressed) then it will rehearse old

memories in that region.

Applications to specific findings. Another future direction is

to use the model to simulate specific sleep-and-learning

datasets. Over the past few years, several studies have been

published that go beyond proving the mere existence of

learning during sleep, and map out a more detailed landscape

of how sleep affects learning. In this section, we will sketch out

how our ideas about memory competition (and competitor

punishment) during REM can be applied to some puzzling data

from Walker, Brakefield, Hobson, and Stickgold (2003) on

how sleep affects memory for motor sequences.

The basic finding from this study is that sleep enhances

memory for simple motor sequences in a button-pressing task.

Walker et al. (2003) build on this finding in several different

ways. In one variant of this paradigm, subjects learned one

sequence (S1) and then learned a second sequence (S2)

immediately afterward. Memory for S2 (measured in terms of

accuracy) improved after sleep, but memory for S1 did not.

However, when six (waking) hours intervened between

learning S1 and S2, both sequences showed improved accuracy

after sleep. Walker et al. (2003) explain this finding in terms of

the idea that 6 h of waking can ‘stabilize’ a memory, thereby

protecting it from interference from subsequent learning.
However, this pattern of results can also be explained in

terms of competitive dynamics during REM. In the ‘no delay’

condition, the two memories are encoded in a very similar

spatiotemporal context. This contextual overlap makes the

memory traces associated with S1 and S2 more similar, which

in turn increases the extent to which the two memories compete

during sleep. Since S2 is stronger, it is more likely to win the

competition (and S1 is more likely to lose), which implies that

S2 will benefit more from REM than S1. In contrast, when 6 h

intervene between learning the sequences, the two sequences

will be associated with relatively distinct sets of contextual

features (e.g. you might be hungry when learning S1 but not

when learning S2). As a result, the cortical engrams of S1 and

S2 will be more different in this condition than in the ‘no delay’

condition. Because there is less overlap, the memory traces are

less likely to compete, so they both should benefit equally from

REM.

In a related finding, Walker et al. (2003) trained subjects on

S1 and let them sleep (so S1 performance improved). On the

second day of the experiment, Walker et al. (2003) trained

subjects on S2. Prior to learning S2, some subjects were briefly

re-exposed to S1, and some subjects were not. On the third day,

all subjects showed improved memory for the S2. However, the

re-exposure manipulation had a large effect on memory for S1:

Subjects who were re-exposed to S1 showed a large decrease in

S1 performance from day 2 to day 3. In contrast, subjects who

were not re-exposed to S1 did not show a change in S1

performance. Walker et al. (2003) interpret these results in

terms of reconsolidation; according to this idea, reactivating a

memory temporarily makes the molecular substrate of that

memory more labile, and thus more vulnerable to interference.

For example, in the animal literature, several studies have

found that ‘reminding’ an animal of a tone-shock association

(by presenting the tone by itself) makes that tone-shock

memory vulnerable to disruption via injection of a protein

synthesis inhibitor (e.g. Nader, Schafe, & LeDoux, 2000; for a

recent review, see Dudai & Eisenberg, 2004; for additional

discussion of how the Walker et al., 2003 finding relates to the

animal reconsolidation literature, see Nader, 2003). However,

we can explain these results without positing re-labialization of

the S1 memory. Rather, according to our REM framework,

presenting S1 in the same context as S2 makes it more likely

that S1 will pop up as a competitor to S2 during the second

night of sleep, which (in turn) will hurt memory for S1.

We still need to build a working simulation of the Walker et

al. (2003) data, in order to test the sufficiency of these ideas.

However, even without a working simulation, it is not difficult

to generate testable predictions that follow from our

competitor-punishment account of these results. According to

our theory, the key variable that determines whether S1

memory improves during sleep is the similarity of S1 to S2.

This implies that, if we could make the S1 memory trace more

different from the S2 trace (by changing the stimuli or motor

responses, or by having subjects learn the two sequences in

different rooms), this would allow the network to rehearse both

S1 and S2 without them interfering with one another. In

contrast, the reconsolidation account does not intrinsically
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make predictions about effects of S1–S2 similarity (although it

is not incompatible with the idea that higher similarity will lead

to higher interference).

The fact that we can account for the Walker et al. (2003)

data in terms of competitor punishment has led us to consider

whether we can account for other reconsolidation findings in

terms of competitor punishment. Specifically, in the fear

conditioning paradigm described above (where subjects are

exposed to a tone-shock pair, and later are ‘reminded’ of this

association by presenting the tone), it is possible to construe the

‘tone alone’ presentation as a competitor to the original

memory (i.e. tone is now being paired with safety, not shock),

rather than a reminder of the original memory (see Eisenberg,

Kobilo, Berman, & Dudai, 2003 for a similar idea). Given this

premise, we can construct a competitor-punishment account of

basic reconsolidation findings:

†One of the key ideas presented in this paper is that

catastrophic interference is the ‘default mode’ for neural

networks: In the absence of special memory protection

mechanisms (e.g. the REM sleep mechanism presented here),

new learning will weaken similar pre-existing memories.

Rehearsal of the new memory during SWS will compound this

effect, resulting in worse and worse recall of the pre-existing

memory over time.

†In the fear conditioning paradigm, after the animal is

exposed to the ‘tone-safety’ association, we posit that REM

learning (or something like it) is needed to protect the original

‘tone-shock’ memory.

†Protein synthesis blockers may disrupt REM learning (see

Ribeiro & Nicolelis, 2004 for discussion of transcriptional

factors in REM sleep) while leaving other forms of neural

plasticity relatively intact. In this situation (where learning

about the tone-safety event is still taking place, in the absence

of REM memory protection), the tone-safety memory will

catastrophically interfere with the tone-shock memory,

resulting in diminished fear conditioning.

At this point, these ideas are highly speculative (especially

the idea that protein synthesis blockers would selectively

disrupt REM memory protection mechanisms). However, in

light of recent attempts to explain human learning data in terms

of reconsolidation theory, we think it is equally important to

consider whether animal ‘reconsolidation’ findings can be

explained by network-level interference theories such as CLS.

At the very least, this leads one to consider factors that were

previously neglected (e.g. the exact relationship between the

‘reminder’ and the original memory; and also the role of

different sleep stages in promoting/preventing reconsolidation

effects).

3.11. Final thoughts

In recent years, Complementary Learning Systems research

has focused on simulating specific findings (e.g. Norman &

O’Reilly, 2003; O’Reilly & Rudy, 2001). While this approach

has been very productive, it is also important to take a step back

and assess how well CLS does at addressing the problem that it

was designed to solve: accurately storing and maintaining
knowledge about the environment. In this paper, we have

outlined the challenges that the CLS model faces, in order to

provide a satisfactory solution to the stability–plasticity

problem. We have also tried to outline some possible ways

of addressing these challenges. We showed how leveraging

inhibitory oscillations can help reduce interference during

learning, by ensuring that synapses are modified judiciously

(i.e. such that strengthening is focused on weak target units,

and weakening is focused on strong non-target units). We also

showed how a ‘REM sleep’ process can be used to protect

memories when these memories are no longer being directly

supported by the environment. Importantly, although our

discussion of the oscillating learning algorithm and REM

sleep has focused on the cortical model, we think that the

oscillating algorithm and the REM memory protection

mechanism may also be applicable to the hippocampus. We

are presently exploring this possibility.

The analyses presented here illustrate the vast distance that

CLS has to travel before it solves stability–plasticity (e.g. we

need to devise a mechanism that will allow the REM sleep

model to scale up to larger networks, with more stored

memories). However, CLS has a long history of turning its

weaknesses into strengths: Understanding that networks with

distributed, overlapping representations perform poorly at

rapid memorization led to a better understanding of why we

need a hippocampus, and how it works. Understanding that the

standard CLS model fails to deal properly with non-stationary

environments may lead to a better understanding of REM

sleep. Finally, understanding the limitations of simple Hebbian

learning may lead to a better understanding of the functional

role of theta oscillations. This history gives us hope that—as

we continue to chip away at stability–plasticity—our efforts

will be repaid with further insights into the functional and

neural architecture of learning.
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