
LETTER Communicated by Michael Hasselmo

How Inhibitory Oscillations Can Train Neural Networks and
Punish Competitors

Kenneth A. Norman∗

knorman@princeton.edu
Ehren Newman∗

enewman@princeton.edu
Greg Detre
gdetre@princeton.edu
Sean Polyn
polyn@psych.upenn.edu
Department of Psychology, Princeton University, Princeton, NJ 08544, U.S.A.

We present a new learning algorithm that leverages oscillations in the
strength of neural inhibition to train neural networks. Raising inhibition
can be used to identify weak parts of target memories, which are then
strengthened. Conversely, lowering inhibition can be used to identify
competitors, which are then weakened. To update weights, we apply the
Contrastive Hebbian Learning equation to successive time steps of the
network. The sign of the weight change equation varies as a function of
the phase of the inhibitory oscillation. We show that the learning algo-
rithm can memorize large numbers of correlated input patterns without
collapsing and that it shows good generalization to test patterns that do
not exactly match studied patterns.

1 Introduction

The idea that memories compete to be retrieved is one of the most funda-
mental axioms of neural processing. According to this view, retrieval suc-
cess is a function of the amount of input that the target memory receives,
relative to other, competing memories. If the target memory receives sub-
stantially more input than competing memories, it will be retrieved quickly
and accurately; if support for the target memory is low relative to compet-
ing memories, the target memory will be retrieved slowly or not at all.

This view implies that, to maximize subsequent retrieval success, the
memory system can enact two distinct kinds of changes. The more obvious
way to improve retrieval is to strengthen the target memory. However,
it should also be possible to improve retrieval by weakening competing

∗The first two authors contributed equally to this research.

Neural Computation 18, 1577–1610 (2006) C© 2006 Massachusetts Institute of Technology

1578 K. Norman, E. Newman, G. Detre, and S. Polyn

memories. Over the past decade, the idea that competitors are punished
has received extensive empirical support. Studies by Michael Anderson and
others have demonstrated the following regularity: if a memory receives
input from the retrieval cue but the memory is not ultimately retrieved,
then the memory is weakened. Furthermore, this weakening appears to
be proportional to the amount of input that a competitor receives (e.g.,
Anderson, 2003). Put simply, the more that a memory competes (so long
as it is not ultimately retrieved), the more it is punished. We review some
illustrative findings in section 1.1.

However, despite the obvious functional utility of punishing competi-
tors and the large body of psychological research indicating that competi-
tor punishment occurs, extant computational models of memory have not
directly addressed the issue of competitor punishment. In section 2, we
present a theory of how the brain can exploit regular oscillations in neural
inhibition to punish competing memories and strengthen weak parts of
target memories. In section 3, we explore the functional properties of our
oscillation-based learning algorithm: How well can it store patterns, relative
to other learning algorithms that do not explicitly incorporate competitor-
punishment, and how does increasing overlap between patterns affect the
learning algorithm’s ability to store item-specific features of individual pat-
terns?

The ultimate goal of this work is to show how explicitly incorporat-
ing competitor punishment mechanisms into neural learning algorithms
can improve the algorithms’ ability to memorize overlapping patterns and
improve our understanding of how inhibitory oscillations (e.g., theta oscil-
lations) contribute to learning

1.1 Data Indicating Competitor Punishment. The phenomenon of
competitor punishment is nicely illustrated by data from Michael Ander-
son’s retrieval induced forgetting (RIF) paradigm (for a comprehensive
overview of RIF results, see Anderson, 2003). In the RIF paradigm, partic-
ipants are given a list of category exemplar pairs (e.g. Fruit-Apple, Fruit-
Kiwi, and Fruit-Pear) one at a time and are told to memorize the pairs.
Immediately after viewing the pairs, participants are given a practice phase
where they practice retrieving a subset of the items on the list (e.g., they are
given Fruit-Pe and must say “pear”). After a delay (e.g., 20 minutes),
participants’ memory for all of the items on the study list is tested. Prac-
ticing Fruit-Pe improves recall of “pear” but hurts recall of competing
items (e.g., “apple”). Importantly, Anderson and Spellman (1995) found
that reduced recall of “apple” is evident even when subjects are given in-
dependent cues that were not presented during the practice stage (e.g.,
Red-A). This finding indicates that the Apple representation itself, and
not just the Fruit-Apple connection, has been weakened. Anderson, Bjork,
and Bjork (1994) also found that practicing Fruit-Pe results in more pun-
ishment for strong associates of fruit (“apple”) than weak associates of fruit

How Inhibitory Oscillations Can Train 1579

(“kiwi”). Intuitively, strong associates compete more than weak associates,
so they suffer more competitor punishment. The fact that impaired recall of
the competitor (relative to baseline) lasts on the order of tens of minutes and
possibly longer suggests that impaired recall is due to changes in synap-
tic weights, as opposed to carryover of activation states from the retrieval
practice phase.

Anderson’s retrieval-induced forgetting experiments are a particu-
larly well-characterized example of competitor punishment. Importantly,
though, they are not the only example of this dynamic. To illustrate the
generalized nature of this phenomenon, we briefly review findings from
other domains that can be understood in terms of competitor punishment:

� Metaphor comprehension. Glucksberg, Newsome, and Goldvarg (2001)
showed that word meanings that are not applicable to the current
sentence suffer lasting inhibition. For example, after reading, “My
lawyer is a shark,” participants were slower to evaluate sentences
that reference the concept “swim” (e.g., “Geese are good swimmers”).
Glucksberg et al. argue that when participants read, “My lawyer is
a shark,” less appropriate meanings of shark (e.g., “swim”) compete
with more appropriate meanings (e.g., “vicious”). “Swim” receives
input but loses the competition so it is punished.

� Task switching. Mayr and Keele (2000) found that after switching from
task A to task B, it is more difficult to switch back to task A than to
switch to a new task (task C). This can be explained in terms of task
A’s competing with task B during the initial switch. Because task A
competes but loses (i.e., participants eventually succeed in switching
to task B), the neural representation of task A is punished, thereby
making it more difficult to reactivate later.

� Negative priming. In negative priming tasks, participants have to pro-
cess one object and ignore other objects on each trial (e.g., participants
might be instructed to name the green object and ignore objects that
are not green). Objects that were ignored sometimes reappear as target
objects on subsequent trials. Studies have found that participants are
slower to process objects that were ignored on previous trials com-
pared to objects that were not ignored (see Fox, 1995, for a review).
This can be explained in terms of the idea that nontarget objects com-
pete with target objects. By attending to the target color, participants
bias the competition such that the target object wins the competition.
Because the representations of nontarget objects receive strong input
from the stimulus array but lose the competition, these representations
are punished.

� Cognitive dissonance reduction. Freedman (1965) showed that if a child
is given a mild threat not to play with a toy (and then does not play
with the toy), the child ends up liking the toy less. In contrast, if a

1580 K. Norman, E. Newman, G. Detre, and S. Polyn

child is given a strong threat not to play with a toy, there is no attitude
change. This paradigm can be understood in terms of a competition
between wanting to play with the toy (“play”) and not wanting to
play with the toy (“don’t play”). In the mild threat condition, “don’t
play” just barely wins over “play”; “play” is a losing competitor, so it
is punished, resulting in reduced liking. In the strong threat condition,
“don’t play” wins easily over “play”; there is not strong competition,
so “play” is not punished.

The ubiquitous presence of competitor punishment in psychology
spurred us to develop a learning mechanism that can account for this dy-
namic. Our goal is to come up with a neural network learning algorithm
that punishes representations if and only if they compete (and lose) during
retrieval. Also, the learning algorithm should be able to efficiently train
new patterns into the network in a manner that supports subsequent recall
of these patterns. Ultimately we believe that these goals are synergistic:
pushing away competitors during training should improve the accuracy of
recall at test.

2 The Learning Algorithm

In this section, we present a learning algorithm for rate-coded neural net-
works that can punish competitors as well as train new patterns into a
network. The algorithm depends critically on changes in the strength of
neural inhibition. By way of background, we first review how inhibition
works in our model. Then we provide an overview of how the learning
algorithm works. Finally, we provide a more detailed account of how the
learning algorithm exploits changes in neural inhibition to punish competi-
tors and strengthen weak memories.

2.1 The Role of Inhibition. Neural systems need some way of control-
ling excitatory neural activity so this activity does not spread across the
entire system, causing a seizure. In keeping with O’Reilly and Munakata
(2000), we argue that inhibitory interneurons act to control excitatory ac-
tivity. Inhibitory interneurons accomplish this goal by sampling the overall
amount of excitatory activity within a particular region via diffuse input
projections and sending back a commensurate amount of inhibition via
diffuse output projections. In this manner, inhibitory interneurons act to
enforce a set point on the amount of excitatory activity. Increasing the
strength of inhibition leads to a decrease in the overall amount of excita-
tory activity, and reducing the strength of inhibition leads to an increase
in the overall amount of excitatory activity. In terms of this framework, an
excitatory neuron will be active if the amount of excitation that it receives
is sufficient to counteract the amount of inhibition that it receives. These
active units make up the representation of the input pattern. Units that

How Inhibitory Oscillations Can Train 1581

receive a substantial amount of excitatory input, but not enough to coun-
teract the effects of inhibition, can be thought of as competitors. Given
processing noise, it is possible that these competing units could be recalled
in place of target units.

2.2 Précis of the Learning Algorithm. The learning algorithm utilizes
the Contrastive Hebbian Learning (CHL) weight change equation (Ack-
ley, Hinton, & Sejnowski, 1985; Hinton & Sejnowski, 1986; Hinton, 1989;
Movellan, 1990). CHL learning involves contrasting a more desirable state
of network activity (sometimes called the plus state) with a less desirable
state of network activity (sometimes called the minus state). The CHL equa-
tion adjusts network weights to strengthen the more desirable state of net-
work activity (so it is more likely to occur in the future) and weaken the
less desirable state of network activity (so it is less likely to occur in the
future):

dWij = ε((X+
i Y+

j) − (X−
i Y−

j)). (2.1)

In the above equation, Xi is the activation of the presynaptic (sending)
unit, and Yj is the activation of the postsynaptic (receiving) unit. The plus
and minus superscripts refer to plus-state and minus-state activity, respec-
tively. dWij is the change in weight between the sending and receiving
units, and ε is the learning rate parameter.

Our algorithm uses changes in the strength of neural inhibition to gen-
erate plus and minus patterns to feed into the CHL equation. To memorize
a pattern of activity, we start by soft-clamping the target pattern onto the
network. Clamp strength was tuned such that, given a normal level of in-
hibition, all of the target features (and only those features) are active. This
pattern serves as the plus state for learning. We then create two distinct
kinds of minus patterns by raising and lowering inhibition, respectively.
Raising inhibition distorts the target pattern by making it harder for target
units to stay on. Lowering inhibition distorts the target pattern by making
it easier for nontarget units to be active.

Next, the learning algorithm updates weights by two separate CHL-
based comparisons. First, it applies CHL to the difference in network ac-
tivity given normal versus high inhibition. Second, it applies CHL to the
difference in network activity given normal versus low inhibition.

2.2.1 Comparing Normal versus High Inhibition. At a functional level, the
normal versus high-inhibition comparison strengthens weak parts of the
target pattern by increasing their connectivity with other parts of the target
pattern. Raising inhibition acts as a kind of stress test on the target pattern. If
a target unit is receiving relatively little collateral support from other target
units, such that its net input is just above threshold, raising inhibition will

1582 K. Norman, E. Newman, G. Detre, and S. Polyn

trigger a decrease in the activation of that unit. However, if a target unit
is receiving strong collateral support, such that its net input is far above
threshold, it will be relatively unaffected by this manipulation. The CHL
equation (applied to normal versus high inhibition) strengthens units that
turn off when inhibition is raised, by increasing weights from other active
units. These weight changes ensure that a target unit that drops out on a
given trial will receive more input the next time that cue is presented. If the
same pattern is presented repeatedly, eventually the input to that unit will
increase to the point where it no longer drops out in the high-inhibition
condition. At this point, the unit should be well connected to the rest of the
target representation, making it possible for the network to complete that
unit, and no further strengthening will occur.

2.2.2 Comparing Normal versus Low Inhibition. The normal-versus low-
inhibition comparison punishes competing units by reducing their con-
nectivity with target units. As discussed earlier, competing units can be
defined as nontarget units that (given normal levels of inhibition) receive
almost enough net input to come on, but not enough input to be active in
the final, settled state of the network. If a nontarget unit is located just below
threshold, then lowering inhibition will cause that unit to become active.
However, if a nontarget unit is far below threshold (i.e., it is not receiving
strong input), it will be relatively unaffected by this manipulation. The CHL
equation (applied to normal versus low inhibition) weakens units that turn
on when inhibition is lowered, by reducing weights from other active units.
These weight changes ensure that a unit that competes on one trial will
receive less input the next time that cue is presented. If the same cue is
presented repeatedly, eventually the input to that unit will diminish to the
point where it no longer activates in the low-inhibition condition. At this
point, the unit is no longer a competitor, so no further punishment occurs.

2.3 Implementing the Algorithm Using Inhibitory Oscillations. The
fact that the learning algorithm involves changes in the strength of inhibi-
tion led us to consider how the algorithm relates to neural theta oscillations
(rhythmic changes in local field potential at a frequency of approximately
4 to 8 Hz in humans). Theta oscillations depend critically on changes in
the firing of inhibitory interneurons (Buzsaki, 2002; Toth, Freund, & Miles,
1997), and there are several data points indicating that theta oscillations
might play a role in learning (e.g., Seager, Johnson, Chabot, Asaka, & Berry,
2002; Huerta & Lisman, 1996). In section 4, we assess the correspondence
between our algorithm and theta in more detail. At this point, the key
insights are that continuous inhibitory oscillations are widespread in the
brain, and these oscillations might serve as a neural substrate for our learn-
ing algorithm.

The version of the learning algorithm described in the previous sec-
tion (where inhibition is set to normal, higher than normal, or lower than

How Inhibitory Oscillations Can Train 1583

normal) is useful for expository purposes, but the discrete nature of the
inhibitory states conflicts with the continuous nature of theta oscillations.
To remedy this, we devised an implementation of the learning algorithm
that oscillates inhibition in a continuous sinusoidal fashion (from higher
than normal to lower than normal). Also, instead of changing weights by
comparing normal versus high inhibition and normal versus low inhibi-
tion, we change weights by comparing network activity on successive time
steps. With regard to the CHL algorithm, the key intuition is that at each
point in the inhibitory oscillation, the network is either moving toward the
target state (i.e., the pattern of network activity when inhibition is at its nor-
mal level) or away from its target state, toward a less desirable state where
there is either too little activity (in the case of high inhibition) or too much
activity (in the case of low inhibition) . Consider the pattern of activity at
time t and the pattern of activity at time t + 1. If inhibition is moving toward
its normal level, then the activity pattern at time t + 1 will be closer to the
target state than the activity pattern at time t. In this situation, we will use
the CHL equation to adapt weights to make the pattern of activity at time t
more like the pattern at time t + 1. However, if inhibition is moving away
from its normal level, then the activity pattern at time t + 1 will be farther
from the target state than the activity pattern at time t. In this situation, we
will use the CHL equation to adapt weights to make the pattern of activity
at time t + 1 more like the pattern at time t. These rules are formalized in
equation 2.2:

dWij =




ε((Xi (t + 1)Yj (t + 1)) − (Xi (t)Yj (t)))
if inhibition is returning to its normal value

ε((Xi (t)Yj (t)) − (Xi (t + 1)Yj (t + 1)))
if inhibition is moving away from its normal value.

(2.2)

Note that the two equations are identical except for a change in sign.
These equations collectively serve the same functions as the normal-versus
high-inhibition and normal-versus low-inhibition comparisons described
earlier: competitors are punished when the network moves between normal
and low inhibition and back again, and weak parts of the target representa-
tion are strengthened when the network moves between normal and high
inhibition and back again. However, instead of changing weights by com-
paring snapshots taken at disparate points in time, equation 2.2 achieves
the same goal by comparing temporally adjacent network states. Figure 1
summarizes the learning algorithm.

2.4 Network Architecture and Biological Relevance. Although we
think the oscillating learning algorithm may be applicable to multiple brain
structures, the work described here focuses on applying the algorithm to a
neocortical network architecture. McClelland, McNaughton, and O’Reilly

1584 K. Norman, E. Newman, G. Detre, and S. Polyn

H
ig

h
Lo

w

Change in activation:
 Competitor Positive
 Target None

Learning rate: Negative

Result: Competitor
 weakened

Change in activation:
 Competitor Negative
 Target None

Learning rate: Positive

Result: Competitor
 weakened

Change in activation:
 Competitor None
 Target Positive

Learning rate: Positive

Result: Target
 strengthened

TargetCompetitor TargetCompetitor

Change in activation:
 Competitor None
 Target Negative

Learning rate: Negative

Result: Target
 strengthened

In
h

ib
it

io
n

TargetCompetitor

TargetCompetitor

TargetCompetitor

Figure 1: Summary of the combined learning algorithm, showing how target
and competitor activity change during different phases of the inhibitory oscilla-
tion and how these changes in activity affect learning. Moving from normal to
high back to normal inhibition serves to identify and strengthen weak parts of
the target pattern. Moving from normal to low back to normal inhibition serves
to identify and punish competitors.

(1995) and many others (e.g., Hinton & Ghahramani, 1997; Grossberg, 1999)
have argued that the goal of neocortical processing is to gradually develop
an internal model of the structure of the environment that allows the net-
work to generate predictions about unseen input features. According to the
Complementary Learning Systems model developed by McClelland et al.
(1995), one of the defining features of cortical learning is that the cortex
assigns similar representations to similar inputs. This property allows the
network to generalize to new patterns based on their similarity to previ-
ously encountered patterns. McClelland et al. contrast this with hippocam-
pal learning, which (according to their model) involves assigning distinct
representations to input patterns regardless of their similarity; this property
allows the hippocampus to do one-trial memorization but hurts its ability
to generalize to new patterns based on similarity (see also Marr, 1971;
McNaughton & Morris, 1987; Rolls, 1989; Hasselmo, 1995; Norman &
O’Reilly, 2003).

To implement a model of cortical learning, our initial simulations used a
simple two-layer network, comprising an input-output layer and a hidden
layer. The network is shown in Figure 2. The input-output layer was used
to present patterns to the network. The hidden layer was allowed to self-
organize. Every input-output unit was connected to every input-output unit
(including itself) and to every hidden unit. All of the synaptic connections
were bidirectional and modifiable according to the dictates of the learning
algorithm.

How Inhibitory Oscillations Can Train 1585

Input/Output

Hidden

Figure 2: Diagram of the network used in our simulations. Patterns were pre-
sented to the lower part of the network (the input-output layer). The upper
part of the network (the hidden layer) was allowed to self-organize. Every unit
in the input-output layer was connected to every input-output unit (including
itself) and to every hidden unit via modifiable, bidirectional weights. All of
the simulations described in the article used an 80-unit input-output layer. The
hidden layer contained 40 units except when specifically noted otherwise.

This architecture is capable of completing missing pieces of input pat-
terns via input-layer recurrents and backprojections from the hidden layer.
More important, the hidden layer gives it the ability to adaptively re-
represent the inputs to facilitate this process of pattern completion. An
important goal of the simulations below is to assess whether the oscillating
algorithm, applied to this simple cortical architecture, can simultaneously
meet the following desiderata for cortical learning (McClelland et al., 1995;
O’Reilly & Norman, 2002):

� The network should assign similar hidden-layer representations to
similar inputs.

1586 K. Norman, E. Newman, G. Detre, and S. Polyn

� After repeated exposure to a set of patterns, the network should be
able to fill in missing pieces of those patterns, even if the patterns are
highly correlated (insofar as real-world input patterns show a high
degree of correlation; Simoncelli & Olshausen, 2001).

� The network should be able to generalize to input patterns that re-
semble (but do not exactly match) trained patterns.

2.5 General Simulation Methods. The simulation was implemented
using a modified version of O’Reilly’s Leabra algorithm (O’Reilly & Mu-
nakata, 2000). Apart from a small number of changes listed below (most
importantly, relating to the weight update algorithm and how we added
an oscillating component to inhibition), all other aspects of the algorithm
used here were identical to Leabra. (For a more detailed description of the
Leabra algorithm, see O’Reilly & Munakata, 2000.)

As per the Leabra algorithm, we explicitly simulated only excitatory
units and excitatory connections between these units; we did not explic-
itly simulate inhibitory interneurons. Excitatory activity was controlled
by means of a k-winner-take-all (kWTA) inhibitory mechanism (O’Reilly
& Munakata, 2000; Minai & Levy, 1994). The kWTA algorithm sets the
amount of inhibition for each layer to a value such that at most k units
in that layer show activation values above .25 (fewer than k units will
be active if excitatory input does not exceed the leak current, which
exerts a constant drag on unit activation). According to this algorithm,
all of the units in a layer receive the same amount of inhibitory input
on a given time step, but the amount of inhibition can vary across lay-
ers. The kWTA algorithm can be viewed as a shortcut that captures the
“set-point” role of inhibitory interneurons while reducing computational
overhead (relative to explicitly simulating the neurons). The kWTA algo-
rithm also makes it easy to specify the desired amount of activity in a
layer by changing the k model parameter. The k parameter was set to
k = 8 in both the input-output and hidden layers, except when specified
otherwise.

To implement the inhibitory oscillation required for the learning algo-
rithm, we used the following procedure. First, at each time step, we used
the kWTA algorithm to compute a baseline (normal) level of inhibition.
Then we added an oscillating component to the baseline inhibition value.
The oscillating component was added only to the input-output layer, not
the hidden layer. We limited the oscillation to the input-output layer be-
cause we wanted to build the simplest possible architecture that exhibits
the desired learning dynamic. We found that adding oscillations to the hid-
den layer increases the complexity of the model’s behavior, but it does not
substantially affect learning performance in either a positive or negative
fashion (see appendix C for a concrete demonstration of this point). The
magnitude of the oscillating component was varied in a sinusoidal fashion

How Inhibitory Oscillations Can Train 1587

from min to max (where min and max are negative and positive numbers,
respectively).1

At the start of each training trial, the target pattern was soft-clamped
onto the input-output layer. Over the course of a trial, inhibition was oscil-
lated once from its normal value to the high-inhibition value, then back to
normal, then down to the low-inhibition value, then back to normal. The
onset of the inhibitory oscillation was delayed 20 time steps from the onset
of the stimulus. This delay ensures that activity will reach its equilibrium
state (corresponding to the retrieved memory) prior to the start of the oscil-
lation. The period of the inhibitory oscillation was set to 80 time steps. This
number was chosen because it gives the network enough time for changes in
inhibition to lead to changes in activation, but no more time than was neces-
sary. In principle, we could oscillate inhibition multiple times per stimulus.
However, given the way that we calculated weight updates (see below), the
effects of multiple inhibitory cycles could be simulated perfectly by stay-
ing with one oscillation per stimulus and increasing the learning rate. For
a summary of key model parameters relating to the inhibitory oscillation
(and other aspects of the model as well), see appendix A.

At each time step (starting at the beginning of the inhibitory oscillation),
weight updates were calculated using equation 2.2. However, these weight
updates were not applied until the end of the trial. This policy makes it
easier to analyze network behavior because weight changes cannot feed
back and influence patterns of activation within a trial.

3 Simulations

In the following simulations, we explore the oscillating algorithm’s ability to
meet the desiderata outlined in section 2.4. In particular, we are interested
in the algorithm’s ability to support omnidirectional pattern completion,
that is, its ability to recall any piece of a pattern when given the rest of the
pattern as a cue. The use of the term omnidirectional sets this kind of pattern
completion apart from asymmetric forms of pattern completion where, for
example, the first half of the pattern can cue recall of the second half, but
not vice versa.

To illustrate the strengths and weaknesses of the oscillating algorithm,
we compare it to O’Reilly’s Leabra algorithm (O’Reilly, 1996; O’Reilly &
Munakata, 2000). Leabra consists of two parts. The core of Leabra is a CHL-
based error-driven learning rule, which we will refer to as Leabra-Error. In
contrast to the oscillating algorithm, which uses changes in the strength of

1 We chose values for min and max according to the following criteria: min has to
be low enough to allow competitors to activate during the low-inhibition phase, but not
so low that the network becomes epileptic. Max has to be high enough such that poorly
supported target units turn off during the high-inhibition phase, but not so high that
well-supported target units turn off also.

1588 K. Norman, E. Newman, G. Detre, and S. Polyn

inhibition to generate patterns for CHL, the Leabra-Error algorithm learns
by comparing the following two phases:

� A minus phase, where some features of the to-be-learned pattern are
omitted, and the network has to fill in missing features

� A plus phase, where the entire to-be-learned pattern is clamped on

The level of inhibition is kept constant across both phases. By compar-
ing minus and plus patterns using CHL, the network learns to minimize
the discrepancy between its “guess” about missing features and the actual
pattern. The full version of Leabra complements Leabra-Error with a sim-
ple Hebbian learning rule that (during the plus phase) strengthens weights
between sending and receiving units when they are both active and weak-
ens weights when the receiving unit is active but the sending unit is not.
This Hebbian rule was developed by Grossberg (1976), who called it instar
learning; O’Reilly and Munakata (2000) describe the same algorithm us-
ing the name CPCA Hebbian Learning.2 Simulations conducted by O’Reilly
(see, e.g., O’Reilly, 2001; O’Reilly & Munakata, 2000) have demonstrated
that adding small amounts of CPCA Hebbian Learning to Leabra-Error
boosts the learning performance of Leabra-Error by forcing it to represent
meaningful input features in the hidden layer.

As recommended by O’Reilly and Munakata (2000), our Leabra com-
parison simulations used a small proportion of CPCA Hebbian Learning
(such that weight changes were 99% driven by Leabra-Error and 1% by
CPCA Hebb).3 Finally, to compare the form of CHL inherent in Leabra-
Error to the form of CHL inherent in the oscillating algorithm more
directly, we also ran simulations using the Leabra-Error rule on its own
(without any CPCA Hebbian Learning). Bias weight learning was turned
off in the Leabra and Leabra-Error simulations in order to better match
the oscillating-algorithm simulations (which did not include bias weight
learning).

In graphs of simulation results, error bars indicate the standard error of
the mean, computed across simulated participants. When error bars are not
visible, this is because they are too small relative to the size of the symbols
on the graph (and thus are covered by the symbols).

2 It is important to emphasize that CPCA Hebbian Learning and Contrastive Hebbian
Learning are completely different algorithms: the latter algorithm operates based on
differences between two activation states, whereas the former algorithm operates based
on single activity snapshots.

3 O’Reilly and Munakata (2000) found that higher proportions of Hebbian learning
hurt performance by causing the network to overfocus on prototypical features and
to underfocus on lower-frequency features. Pilot simulation work, not published here,
confirms that this was true in our Leabra simulations as well.

How Inhibitory Oscillations Can Train 1589

3.1 Simulation 1: Omnidirectional Pattern Completion as a Func-
tion of Input Pattern Overlap and Test Pattern Noise. In this simula-
tion, we explore the oscillating algorithm’s ability to memorize both cor-
related and uncorrelated patterns. When given a large number of cor-
related input patterns, some self-organizing learning algorithms have
a tendency to overrepresent shared features and underrepresent item-
specific features, leading to poor recall of item-specific features (e.g.,
Norman & O’Reilly, 2003, discuss this problem as it applies to CPCA
Hebbian Learning). In this section, we show that the oscillating algo-
rithm is not subject to this problem. To the contrary, we show that
the oscillating algorithm meets all three of the desiderata outlined in
section 2.4:

� The oscillating algorithm outperforms both Leabra and Leabra-
Error at recalling individuating features of highly correlated
input patterns in terms of both asymptotic capacity and training
speed.

� The oscillating algorithm shows good generalization to test cues that
do not exactly match stored patterns.

� The oscillating algorithm learns representations that reflect the simi-
larity structure of the input space.

3.1.1 Methods
• Input pattern creation. We gave the network 200 binary input pat-

terns to learn. Each pattern had 8 (out of 80) units active. To generate the
patterns, we started with a single prototype pattern and then distorted the
prototype by randomly turning off some number of (prototype) units and
turning on an equivalent number of (nonprototypical) units. By varying
the number of “flipped bits,” we were able to vary the average overlap
between input patterns. There were three overlap conditions: 57% average
overlap (achieved by flipping two bits), 28% average overlap (achieved
by flipping four bits), and 11% average overlap (achieved by flipping all
eight bits). We call the last condition the unrelated pattern condition be-
cause the patterns do not possess any central tendency. In creating the
patterns (for all of the levels of bit flipping noted), we implemented a
minimum pairwise distance constraint, such that every input pattern dif-
fered from every other input pattern by at least two (out of eight) active
bits.

• Training and testing. All three algorithms were repeatedly presented
with the 200-pattern training set until learning reached asymptote. After
each epoch of training, we tested pattern completion by measuring the
network’s ability to recall a single nonprototypical feature from each pat-
tern, given all of the other features of that pattern as a retrieval cue. In the
simulations reported here, recall was marked as correct if the activation of

1590 K. Norman, E. Newman, G. Detre, and S. Polyn

the correct unit was larger than the activation of all of the other (noncued)
input-output units.4

To assess the model’s ability to generalize to test cues that do not exactly
match studied patterns, we distorted retrieval cues by adding gaussian
noise to the pattern that was clamped onto the network. Specifically, each
unit’s external input value was adjusted by a value sampled from a zero-
mean gaussian distribution. These input values, once adjusted by noise,
remained fixed throughout the trial. We manipulated the amount of noise
at test by adjusting the variance of the noise distribution.

• Applying Leabra to omnidirectional pattern completion. For our
Leabra and Leabra-Error simulations, we constructed minus phase pat-
terns by randomly blanking out four of the eight units in the input pattern,
thereby forcing the network to guess the correct values of these patterns. In
the plus phase, we clamped the full eight-unit pattern onto the input layer.
Every time that a pattern was presented, a different (randomly selected) set
of four units was blanked. Otherwise, if the same four units were blanked
each time, the learning algorithm would learn to recall those four units but
not any of the other units.5

• Learning rates. Based on pilot simulations, we selected .0005 as our
default learning rate for Leabra and Leabra-Error. Simulations using this
learning rate yielded asymptotic capacity that was almost identical to the
capacity achieved with lower learning rates, and training time was within
acceptable bounds. For the oscillating algorithm, we were able to achieve
near-peak performance with much higher learning rates. We found that
a learning rate of .05 for the oscillating algorithm yielded the best com-
bination of high final capacity and (relatively) short training time. The
number of training epochs for each algorithm/learning-rate combination
was adjusted to ensure that training lasted long enough to reach asymp-
tote. Large differences in learning rates were mirrored by commensurately
large differences in training duration (e.g., the oscillating algorithm simula-
tions with learning rate .05 took 250 epochs to reach asymptote; in contrast,
Leabra simulations with learning rate .0005 took 10,000 epochs to reach
asymptote).

4 We have also run pattern completion simulations using a more restrictive recall
criterion, whereby recall was marked “correct” if the activation of the correct unit was
more than .5 and none of the incorrect units had activation more than .5. All of the
advantages of the oscillating algorithm (relative to other algorithms) that are shown in
simulation 1 and simulation 2 are also present when we use this more restrictive recall
criterion.

5 This is not the only way to train a Leabra network so it supports pattern completion.
However, it is the most effective method that we were able to find. Any conclusions that
we reach about Leabra and Leabra-Error are restricted to the particular variants that we
used in our simulations and may not apply to simulations where other methods are used
to generate partial patterns for the minus phase.

How Inhibitory Oscillations Can Train 1591

0 2 4 6 8 10 12 14 16
0

50

100

150

200

0 2 4 6 8 10 12 14 160 2 4 6 8 10 12 14 16

N
um

be
r

of
 P

at
te

rn
s

Le
ar

ne
d

Patterns Learned as a Function of Test Pattern Noise

28% Average Input Overlap 57% Average Input Overlap

Unrelated Input Patterns

Test Pattern Noise (x 10-2)

Test Pattern Noise (x 10-2) Test Pattern Noise (x 10-2)

Oscillating Algorithm
Leabra
Leabra-Error

0

50

100

150

200

N
um

be
r

of
 P

at
te

rn
s

Le
ar

ne
d

0

50

100

150

200

N
um

be
r

of
 P

at
te

rn
s

Le
ar

ne
d

A

B C

Figure 3: This figure shows the number of patterns (out of 200) successfully
recalled at the end of training by each algorithm as a function of the amount of
overlap between input patterns: (A) unrelated patterns; (B) correlated patterns,
28% overlap; (C) correlated patterns, 57% overlap. It also shows the amount
of noise applied to retrieval cues at test. Leabra and Leabra-Error outperform
the oscillating algorithm given low input pattern overlap and low levels of
test pattern noise. However, for higher levels of input pattern overlap and test
pattern noise, the oscillating algorithm outperforms Leabra and Leabra-Error.

3.1.2 Results
• Capacity. Figure 3 shows the asymptotic number of patterns learned

for the oscillating algorithm, Leabra, and Leabra-Error. For unrelated in-
put patterns and low levels of test pattern noise, the oscillating algorithm
learns approximately 150 of 200 patterns, but it does less well than both
Leabra and Leabra-Error. However, for higher levels of test pattern noise
and higher levels of input pattern overlap, the relative position of the algo-
rithms reverses, and the oscillating algorithm performs substantially better
than Leabra and Leabra-Error. Appendix C shows that the oscillating al-
gorithm’s advantage for highly overlapping inputs is still obtained when
inhibition is oscillated in the hidden layer (in addition to the input-output
layer).

1592 K. Norman, E. Newman, G. Detre, and S. Polyn

Hidden Layer Overlap as a Function of Input Overlap

Input Pattern Overlap

unrelated 28% 57%

H
id

de
n

La
ye

r
O

ve
rla

p

0.0

0.2

0.4

0.6

0.8

1.0

Oscillating Algorithm
Leabra
Leabra-Error

Figure 4: This figure plots, for the oscillating algorithm, Leabra, and Leabra-
Error, the average pairwise overlap between patterns in the hidden layer (at the
end of training), as a function of input-pattern overlap. Hidden-layer overlap
is lower for the oscillating algorithm than for Leabra and Leabra-Error.

• Hidden representations. The oscillating algorithm’s superior perfor-
mance for high levels of input pattern overlap and test pattern noise stems
from its ability to maintain reasonable levels of pattern separation on the
hidden layer, even when inputs are very similar. Figure 4 plots the aver-
age pairwise overlap between patterns in the hidden layer (at the end of
training) as a function of input overlap.6 The figure shows that all three
algorithms maintain good pattern separation in the hidden layer given low
input overlap, but as input overlap increases, hidden overlap increases
much more sharply in the Leabra and Leabra-Error simulations versus in
the simulations using the oscillating algorithm. The high level of hidden
layer overlap in the Leabra and Leabra-Error simulations facilitates recall

6 Both input overlap and hidden overlap were operationalized using a cosine distance
measure; this measure ranges from zero (no overlap) to one (maximal overlap).

How Inhibitory Oscillations Can Train 1593

of shared features but makes it difficult for the network to recall the unique
features of individual patterns. This problem is especially severe given high
levels of test pattern noise. When hidden representations are located close
together, this increases the odds that, given a noisy input pattern, the net-
work will slip out of the correct attractor into a neighboring attractor.

The oscillating algorithm’s good pattern separation in the high-overlap
condition is due in large part to its ability to punish competitors. If the
representations of two patterns (call them pattern A and pattern B) get too
close to each other, then pattern A will start appearing as a competitor
(during the low-inhibition phase) during study of pattern B, and vice versa.
Assuming that both A and B are presented a large number of times at
training, the ensuing competitor punishment will have the effect of pushing
apart the hidden layer representations of A and B so they no longer compete
with one another.

Another factor that contributes to the oscillating algorithm’s good per-
formance is its ability to focus learning on features that are not already well
learned. Given a large number of correlated patterns, the oscillating algo-
rithm stops learning about prototypical features relatively early in training
(once their representation is strong enough to resist increased inhibition)
and focuses instead on learning idiosyncratic features of individual items
(which are less able to resist increased inhibition). Reducing learning of
prototypical features, relative to item-specific features, improves pattern
separation and (through this) pattern completion performance.

While the oscillating algorithm shows more pattern separation than
Leabra and Leabra-Error, it still possesses the key property that it assigns
similar hidden representations to similar stimuli. In this respect, the oscil-
lating algorithm (applied to this two-layer cortical network) differs strongly
from hippocampal architectures that automatically assign distinct represen-
tations to stimuli (e.g., Norman & O’Reilly, 2003). To quantify the oscillating
algorithm’s tendency to use similarity-based representations, we computed
the correlation (across all pairs of patterns) between input-layer overlap and
hidden-layer overlap. Figure 5 plots this input-hidden similarity score for
the oscillating algorithm, Leabra, and Leabra-Error as a function of input
pattern overlap. The average similarity score for the oscillating algorithm is
approximately .5. For the values of input pattern overlap plotted here, the
similarity scores for the oscillating algorithm are higher than the scores for
Leabra-Error but lower than the scores for Leabra.

The observed difference between Leabra and the oscillating algorithm
can be viewed in terms of a simple trade-off: Leabra learns representations
that are true to the structure of the input space, but (given similar input
patterns) this fidelity leads to high hidden layer overlap that hurts recall.
The oscillating algorithm gives up a small amount of this fidelity, but as a
result of this sacrifice, it is much better able to recall given high levels of
input pattern overlap and noisy test cues. Furthermore, we should empha-
size that the trade-off observed here is a direct consequence of the limited

1594 K. Norman, E. Newman, G. Detre, and S. Polyn

Input-Hidden Similarity Score as a Function of Input Overlap

Input Pattern Overlap

unrelated 28% 57%

In
pu

t-
H

id
de

n
S

im
ila

rit
y

S
co

re

0.0

0.2

0.4

0.6

0.8

1.0

Oscillating Algorithm
Leabra
Leabra-Error

Figure 5: This figure plots, for the oscillating algorithm, Leabra, and Leabra-
Error, the models’ tendency to assign similar hidden representations to similar
input patterns. See the text for more detail on how this similarity score was com-
puted. Similarity scores for the oscillating algorithm are higher than similarity
scores associated with Leabra-Error and lower than similarity scores associated
with Leabra.

size of the hidden layer. When hidden layer size is increased, the oscillating
algorithm is able to utilize the extra hidden units to simultaneously boost
similarity scores and capacity; we demonstrate this point in appendix B.

• Training speed. Finally, in addition to measuring capacity, we can
also evaluate how quickly the various algorithms reach their asymptotic
capacity. Across all of the conditions described above, the oscillating al-
gorithm learns more quickly than Leabra and Leabra-Error. To illustrate
this point, we selected two conditions where asymptotic capacity was ap-
proximately matched between the oscillating algorithm and either Leabra
or Leabra-Error. Specifically, we compared the oscillating algorithm and
Leabra-Error for unrelated input patterns with .06 test pattern noise; we
also compared the oscillating algorithm and Leabra for input patterns with
57% overlap and zero test pattern noise. For each of these conditions, we
plotted the time course of learning across epochs, for a variety of Leabra
and Leabra-Error learning rate values, in Figure 6.

How Inhibitory Oscillations Can Train 1595

Speed of Training

Unrelated Input Patterns
Test Pattern Noise .06

Epochs of Training
+0 1e+1 1e+2 1e+3 1e+4 1e+5N

um
be

r
of

 P
at

te
rn

s
Le

ar
ne

d

0

20

40

60

80

100

120

140

160

Oscillating Algorithm, lr .05
Leabra-Error, lr .03

57% Average Input Overlap
No Test Pattern Noise

Epochs of Training
1e+0 1e+1 1e+2 1e+3 1e+4 1e+5

Oscillating Algorithm, lr .05
Leabra, lr .03
Leabra, lr .01
Leabra, lr .0005

1e

Leabra-Error, lr .01
Leabra-Error, lr .0005

Figure 6: Training speed for the oscillating algorithm, Leabra, and Leabra-
Error. The left-hand figure plots the time course of training for the oscillating
algorithm and Leabra-Error for unrelated input patterns and .06 test pattern
noise; the right-hand figure plots the time course of training for the oscillating
algorithm and Leabra for 57% input overlap and zero test pattern noise. In
both figures, the oscillating algorithm training curves are located to the left of
the Leabra and Leabra-Error training curves, across a wide variety of Leabra
and Leabra-Error learning rate values. Error bars were omitted from the graph
for visual clarity. For all of the points shown here, the standard error was less
than 3.5.

In Figure 6, the oscillating algorithm training curves lie to the left of
the Leabra and Leabra-Error training curves across the full range of Leabra
and Leabra-Error learning rates that we tested (ranging from .0005 to .03).
While it is possible to increase the initial speed of learning in Leabra and
Leabra-Error by increasing the learning rate parameter, this also has the
effect of lowering the asymptotic capacity of the Leabra and Leabra-Error
networks to below the asymptotic capacity of the oscillating algorithm.

The Leabra and Leabra-Error variants used here learn more slowly than
the oscillating algorithm because they learn about only a subset of intraitem
associations on each trial. For example, if the top four units are blanked
during the minus phase in Leabra-Error, the network will learn how to
complete from the bottom four units to the top four units, but it will not
learn how to complete from the top four to the bottom four. Thus, it takes
multiple passes through the study set (blanking a different set of units each
time) for Leabra-Error to strengthen all of the different connections that are

1596 K. Norman, E. Newman, G. Detre, and S. Polyn

required to support omnidirectional pattern completion. In contrast, the
oscillating algorithm has the ability to learn about the whole pattern on
each trial.

3.2 Simulation 2: Three-Layer Autoencoder. In this simulation, we set
out to replicate and extend the results of simulation 1 using a different net-
work architecture: the three-layer autoencoder (Ackley et al., 1985). These
networks consist of an input layer that is connected to a hidden layer, which
in turn is connected to an output layer. During training, the to-be-learned
pattern is presented (in its entirety) to the input layer, and activity is al-
lowed to propagate through the network. The goal of autoencoder learning
is to adjust network weights so the network is able to reconstruct a copy
of the input pattern on the output layer. The main difference between the
autoencoder architecture and the two-layer architecture used in simulation
1 is that, in the autoencoder architecture, there are no direct connections
between the input units that receive external input (from the retrieval cue)
at test and the to-be-retrieved output unit; everything has to go through
the hidden layer. Thus, the autoencoder architecture constitutes a more
stringent test of whether a learning algorithm can develop information-
preserving hidden representations that support pattern completion.

We compared the oscillating algorithm’s ability to learn patterns in the
autoencoder architecture to Leabra and Leabra-Error. Also, the way the net-
work was structured (with distinct input and output layers) made it possible
for us to explore two additional comparison algorithms: Almeida-Pineda
recurrent backpropagation and standard (nonrecurrent) backpropagation.

The results of this simulation replicate the key finding from simulation 1:
the oscillating algorithm outperforms the comparison algorithms at omni-
directional pattern completion when both input pattern overlap and test
pattern noise are high. However, unlike in simulation 1, the oscillating al-
gorithm also outperforms the comparison algorithms in tests with unrelated
input patterns and low levels of test pattern noise. We attribute this latter
finding to the fact that the oscillating algorithm automatically strengthens
weak connections between target units. In contrast, error-driven algorithms
like backpropagation and Leabra-Error strengthen connections between tar-
get units only if this is needed to reduce error at training.

3.2.1 Autoencoder Methods
• Network architecture. To implement an autoencoder architecture, we

added an output layer to the network, so the network was composed of
an 80-unit input layer, a 40-unit hidden layer, and an 80-unit output layer.
The input layer had a full bidirectional projection to the hidden layer, and
the hidden layer had a full bidirectional projection to the output layer. To
maximize comparability with our initial simulations, every input unit was
directly connected to every other input unit, and every output unit was
directly connected to every other output unit (the one crucial difference

How Inhibitory Oscillations Can Train 1597

was that, in the autoencoder simulations, the input units were not directly
connected to the output units). We used the same connection parameters
as in simulation 1; all connections were modifiable. The one exception to
the scheme outlined here was the backpropagation autoencoder, which had
only feedforward connections (from the input layer to the hidden layer and
from the hidden layer to the output layer).

• Training and testing. All of the algorithms were given 150 patterns to
memorize. The training set was repeatedly presented (in a different order
each time) until learning reached asymptote. The details of training for
each algorithm are presented below. After each training epoch, we tested
pattern completion. On each test trial, we left out one feature from the
input pattern and measured how well the network was able to recall the
missing feature on the output layer. As with all of the simulations described
earlier, we only tested recall of item-specific features (i.e., features that were
not part of the prototype pattern), and we scored recall as being correct
based on whether the to-be-recalled output unit was more active than all
of the other (nontarget) units in the output layer. Finally, as in simulation 1,
we manipulated the level of input pattern overlap and also explored how
distorting test cues (by adding gaussian noise to the test patterns) affected
pattern completion performance.7

• Methods for oscillating algorithm simulations. We trained the oscil-
lating algorithm version of the autoencoder by simultaneously presenting
the same pattern to both the input and output layers. During training, inhi-
bition was oscillated on the input and output layers but not on the hidden
layer. The input layer and output layer oscillation parameters were identical
to each other and identical to the parameters that we used in simulation 1.

• Methods for Leabra and Leabra-Error simulations. The Leabra and
Leabra-Error autoencoder simulations used a two-phase design. In the
minus phase, the complete target pattern was clamped onto the input layer
(but not the output layer) and the network was allowed to settle. In the
plus phase, the complete target pattern was clamped onto both the input
and output layers and the network was allowed to settle. Otherwise the
details of the Leabra and Leabra-Error simulations were the same as in
simulation 1.

• Methods for recurrent and nonrecurrent backpropagation
simulations. For our simulations using the Almeida-Pineda (A-P) recurrent
backpropagation algorithm (Almeida, 1989; Pineda, 1987), we used the

7A given amount of test pattern distortion had less of an effect in simulation 2 than
in simulation 1 because in simulation 2 we were only distorting the input layer pattern,
whereas in simulation 1 we were applying the distortion to a shared input-output layer
(so the distortion had a direct effect on output activity, in addition to an indirect effect via
the distorted input pattern). To compensate for this difference, we used a wider range of
test pattern noise values in simulation 2 than in simulation 1.

1598 K. Norman, E. Newman, G. Detre, and S. Polyn

rbp++ program contained in the PDP++ neural network software package.8

For our simulations using the (nonrecurrent) backpropagation algorithm
(Rumelhart, Hinton, & Williams, 1986), we used the bp++ program
contained in the PDP++ software package. For both sets of simulations
(rbp++ and bp++), we used the default learning parameters built in to the
software package (e.g., momentum = .9), except we changed the learning
rate (as described below) and, as with all of the other simulations in this
article, turned off bias weight learning.

• Learning rates. We used a learning rate of .0005 for all four comparison
algorithms. The oscillating algorithm simulations used a learning rate of
.05. We allowed each algorithm to run until learning reached asymptote
(10,000–20,000 epochs for Leabra, Leabra-Error, and A-P recurrent back-
propagation; 100,000 epochs for feedforward backpropagation; 250 epochs
for the oscillating algorithm).9

3.2.2 Results of Autoencoder Simulations. The results of our autoencoder
capacity simulations are shown in Figure 7. The oscillating algorithm out-
performs the comparison algorithms in every condition, with the sole ex-
ception of high input overlap, low test pattern noise (where the oscillating
algorithm’s performance is comparable to backpropagation). As in simula-
tion 1, the oscillating algorithm’s advantage over other algorithms is larger
for high test pattern noise than for low test pattern noise. The most notable
difference between simulation 1 and simulation 2 is that, in this simulation,
the oscillating algorithm outperforms the comparison algorithms given low
input pattern overlap and no test pattern noise (whereas the opposite is true
in simulation 1).

The fact that the oscillating algorithm shows better pattern completion
than the four comparison algorithms can be explained as follows:

� Pattern completion performance is a direct function of the strength of
links between features within a pattern.

� Standard autoencoder training (as embodied by the four comparison
algorithms) does not force the network to learn strong associations
between input features.

In order to minimize reconstruction error, autoencoders need to repre-
sent all of the input features somewhere in the hidden layer, but they do not
have to link these features. In many situations, the autoencoder can min-
imize reconstruction error by representing features individually and then

8 This software can be downloaded from Randy O’Reilly’s PDP++ web site at the
University of Colorado: http://psych.colorado.edu/∼oreilly/PDP++/PDP++.html.

9 We also ran backpropagation simulations with larger learning rates, and the results
were qualitatively similar to the results obtained here.

How Inhibitory Oscillations Can Train 1599

N
um

be
r

of
 P

at
te

rn
s

Le
ar

ne
d

0 5 10 15 20 25 30 0 5 10 15 20 25 30

Autoencoder Simulations:
Patterns Learned as a Function of Test Pattern Noise

28% Average Input Overlap 57% Average Input Overlap

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

Unrelated Input Patterns

Test Pattern Noise (x 10-2)

Test Pattern Noise (x 10-2) Test Pattern Noise (x 10-2)

Oscillating Algorithm

Leabra
Backpropagation
A-P Backpropagation

Leabra-Error

N
um

be
r

of
 P

at
te

rn
s

Le
ar

ne
d

N
um

be
r

of
 P

at
te

rn
s

Le
ar

ne
d

0

20

40

60

80

10 0

12 0

14 0

0

20

40

60

80

100

120

140

A

B C

Figure 7: Results of three-layer autoencoder simulations where we manipu-
lated input pattern overlap and test pattern noise. The oscillating algorithm
performs better than the other algorithms in all conditions except for high input
overlap, low test pattern noise (where the oscillating algorithm’s performance
is comparable to backpropagation). In general, the oscillating algorithm’s ad-
vantage is accentuated for high levels of test pattern noise.

reconstructing the input on a feature-by-feature basis. This strategy leads to
poor pattern completion performance. In contrast, the oscillating learning
algorithm places strong pressure on the network to form direct associations
between the features of to-be-memorized patterns (because units need col-
lateral support from other units in order to withstand the “stress test” of
increased inhibition). These strong links result in good pattern completion
performance.

4 Discussion

The research presented here shows how oscillations in the strength of neural
inhibition can facilitate learning. Specifically, lowering inhibition can be
used to identify competing memories so they can be punished, and raising

1600 K. Norman, E. Newman, G. Detre, and S. Polyn

inhibition can be used to identify weak parts of memories so they can be
strengthened.

The specific weight change equation (CHL) that we use in the oscillating
algorithm is not novel. Rather, the novel claim is that changes in the strength
of inhibition can be used to generate minus (i.e., less desirable) patterns to
feed into the CHL equation. In this section, we provide a brief overview of
the primary virtues of the oscillating learning algorithm relative to the other
algorithms considered here. Then we discuss how the oscillating algorithm
relates to neural data on oscillations and learning and how the oscillating
algorithm relates to the BCM rule (Bienenstock, Cooper, & Munro, 1982).

4.1 Functional Properties of the Learning Algorithm. In section 3, we
showed that the oscillating algorithm (applied to a cortical network archi-
tecture) meets the desiderata for cortical learning outlined earlier: good
completion of overlapping patterns (after repeated exposure to those pat-
terns), good generalization to retrieval cues that do not exactly match stud-
ied patterns, and good correspondence between the structure of the input
patterns and the hidden representations (i.e., similar input patterns tend to
get assigned similar hidden representations).

We attributed the oscillating algorithm’s good performance for overlap-
ping inputs and noisy test cues to its ability to punish competing memories.
Whenever memories start to blend together, they start to compete with one
another at retrieval, and the competitor punishment mechanism pushes
them apart. In this manner, the oscillating algorithm retains good pattern
separation in the hidden layer (see Figure 3) even when inputs overlap
strongly. As discussed earlier, this extra separation is not without costs (e.g.,
it incrementally degrades the hidden layer’s ability to represent the struc-
ture of the input space, compared to Leabra), but the costs are small relative
to the following benefit: maintaining good separation between representa-
tions helps to ensure that memories can be accurately stored and accessed
even in difficult situations (e.g., when there are many similar memories
stored in the system, and the cue only slightly favors one memory over the
other).

The fact that the oscillating algorithm outperforms all of the comparison
algorithms in simulation 2 (pattern completion with an autoencoder archi-
tecture), even for unrelated input patterns, points to another key property
of the algorithm: it automatically probes for weak parts of the attractor
(by raising inhibition) and strengthens these weak parts. This automatic
probing and strengthening ensures that the network will be able to pattern-
complete from one arbitrary subpart of the pattern to another, regardless
of whether that particular partial pattern has been encountered before. In
contrast, the other algorithms that we examined (e.g., Leabra-Error) show a
large performance hit when the partial patterns used to cue retrieval at test
do not exactly match the patterns used to cue retrieval (during the minus
phase) at training.

How Inhibitory Oscillations Can Train 1601

4.2 Relating the Oscillating Algorithm to Neural Theta Oscillations.
We think that neural theta oscillations (and theta-dependent learning pro-
cesses) may serve as the neural substrate of the oscillating learning algo-
rithm. Theta oscillations have been observed in humans in both neocortex
and the hippocampus. Raghavachari et al. (2001) found that cortical theta
was gated by stimulus presentation during a memory experiment, and
Rizzuto et al. (2003) found that theta phase is reset by stimulus onset.
Both findings indicate that theta oscillations are present at the right time
to support stimulus memorization. Other findings point to a more direct
link between theta and synaptic plasticity. In a recent study, Seager et al.
(2002) found that eyeblink conditioning occurred more quickly when an-
imals were trained during periods of high versus low hippocampal theta
power (see Berry & Seager, 2001, for a review of similar studies). Also,
Huerta and Lisman (1996) induced theta oscillations in a hippocampal slice
preparation and found that the direction of plasticity (long-term potentia-
tion versus long-term depression) depends on the phase of theta (see also
Holscher, Anwyl, & Rowan, 1997, for a similar result in anesthetized an-
imals, and Hyman, Wyble, Goyal, Rossi, & Hasselmo, 2003, for a similar
result in behaving animals).

The finding that LTP is obtained during one phase of theta and LTD is
obtained during another phase fits very well with the oscillating algorithm’s
postulate that one part of the inhibitory oscillation (going from normal to
high to normal inhibition) is primarily concerned with strengthening target
memories, and the other part of the oscillation (going from normal to low
to normal inhibition) is primarily concerned with weakening competitors.
Although this result is very encouraging, more work is needed to explore
the mapping between the LTP/LTD findings, and our model. The mapping
is not straightforward because the studies noted used local field potential
to index theta, and it is unclear how much local field potential is driven by
excitatory versus inhibitory neurons.

One could reasonably ask why we think the oscillation in our algorithm
relates to theta oscillations as opposed, to, say, alpha or gamma oscillations.
Functionally, the frequency of the oscillation in our algorithm is bounded
by two constraints. First, the oscillation has to be fast enough such that
the oscillation completes at least one full cycle (and ideally more) when
a stimulus is presented. This rules out slow oscillations (less than 1 Hz).
Also, if the oscillation is too fast relative to the speed of spreading activation
in the network, competitors will not have a chance to activate during the
low-inhibition phase. This constraint rules out very fast oscillations. Thus,
although we are not certain that theta is the correct frequency, the func-
tional constraints outlined here and the findings relating theta to learning
(outlined above) make this a possibility worth pursuing.

4.3 Applications to Hippocampal Architectures. Although this article
has focused on cortical network architectures, we also think that our ideas

1602 K. Norman, E. Newman, G. Detre, and S. Polyn

about theta (that theta can help to selectively strengthen weak target units
and punish competitors) may be applicable to hippocampal architectures.
At this time, there are several theories (other than ours) regarding how
theta oscillations might contribute to hippocampal processing. For example,
Hasselmo, Bodelon, and Wyble (2002) argue that theta oscillations help tune
hippocampal dynamics for encoding versus retrieval, such that dynamics
are optimized for encoding during one phase of theta and dynamics are
optimized for retrieval during another phase of theta. Hasselmo et al.’s
model varies the relative strengths of different excitatory projections as a
function of theta (to foster encoding versus retrieval) but does not vary
inhibition. In contrast, our model varies the strength of inhibition but does
not vary the strength of excitatory inputs. At this time, it is unclear how
our model relates to Hasselmo et al.’s model. We do not see any direct
contradictions between our model and Hasselmo et al.’s model (insofar
as they manipulate different model parameters as a function of theta), so it
seems possible that the two models could be merged, but further simulation
work is needed to address this question.

4.4 Relating the Oscillating Algorithm to BCM. In this section, we
briefly review another algorithm (the BCM algorithm: Bienenstock et al.,
1982) that can be viewed as implementing competitor punishment. Like the
CPCA Hebbian Learning rule, the BCM algorithm is set up to learn about
clusters of correlated features. The main difference between BCM and CPCA
Hebbian Learning relates to the circumstances under which synaptic weak-
ening (LTD) occurs. CPCA Hebbian Learning reduces synaptic weights
when the receiving unit is active but the sending unit is not. In contrast,
BCM reduces synaptic weights from active sending units when the receiv-
ing unit’s activation is above zero but below its average level of activation.
Thus, BCM actively pushes away input patterns from weakly activated hid-
den units. This form of synaptic weakening can be construed as a form of
competitor punishment: if a memory receives enough input to activate its
hidden representation but not enough to fully activate that representation,
that memory is weakened. In contrast, if a memory does not receive enough
input to activate its hidden representation, the memory is not affected. The
main functional difference between competitor punishment in BCM ver-
sus the oscillating algorithm is that BCM can punish competitors only if
their representations show above-zero (but below-average) activation. In
contrast, the oscillating algorithm actively probes for competitors (by low-
ering inhibition) and is therefore capable of punishing competitors even if
they are not active given normal levels of inhibition. This “active probing”
mechanism should result in much more robust competitor punishment.
Importantly, BCM’s form of competitor punishment and the oscillating al-
gorithm’s form of competitor punishment are not mutually exclusive. It is
possible that combining the algorithms would result in better performance

How Inhibitory Oscillations Can Train 1603

than either algorithm taken in isolation. We will explore ways of integrating
BCM with the oscillating learning algorithm in future research.

4.5 Applying the Oscillating Algorithm to Psychological Data. In this
article, we have focused on functional properties of the learning algorithm
(e.g., its capacity for learning patterns, given different levels of overlap).
Another way to constrain the model is to explore its ability to simulate de-
tailed patterns of psychological data. In one line of research, we have used
the model to account for several key findings relating to retrieval-induced
forgetting (Anderson 2003; see section 1.1 for more discussion of this phe-
nomenon). For example, the model can explain the finding that forgetting of
competing items is cue independent (Anderson & Spellman, 1995), the find-
ing that competitor punishment effects are larger when subjects are asked
to retrieve the target versus when they are just shown the target (Anderson,
Bjork, & Bjork, 2000), and the finding that the amount of competitor pun-
ishment is proportional to the strength of the competitor (Anderson et al.,
1994). This modeling work is described in detail in Norman, Newman, and
Detre (2006).

5 Conclusions

The research presented here started with a psychological puzzle: How can
we account for data showing that competitors are punished? In the course
of addressing this issue, we found that competitor punishment mecha-
nisms can boost networks’ ability to learn highly overlapping patterns (by
ensuring that hidden representations do not collapse together). We also ob-
served that the changing inhibition aspect of our algorithm bears a strong
resemblance to neural theta oscillations. As such, this research may end up
speaking to the longstanding puzzle of how theta oscillations contribute
to learning. The challenge now is to follow up the admittedly prelimi-
nary results presented here with a more detailed assessment of how the
basic principles of the oscillating algorithm (competitor punishment via
decreased inhibition and selective strengthening via increased inhibition)
can shed light on psychological, neural, and functional issues.

Appendix A: Model Parameters

A.1 Basic Network Parameters. At the beginning of each simulation,
all of the weights were initialized to random values from the uniform dis-
tribution centered on .5 with range = .4. The initial weight values were
symmetric, such that the initial weight from unit i to unit j was equivalent
to the initial weight from unit j to unit i . This symmetry was maintained

1604 K. Norman, E. Newman, G. Detre, and S. Polyn

through learning because the weight update equations are symmetric. Other
model parameters were as follows:

Parameter Value
stm gain 0.4
input/output layer dtvm 0.2
hidden layer dtvm 0.15
i kwta pt 0.325

Apart from the parameters mentioned above, all other parameters shared
by the oscillating learning algorithm and Leabra were set to their Leabra
default values.

A.2 Oscillation Parameters. The oscillating component of inhibition
was varied from min = −1.21 to max = 1.96. As per equation 2.2, the
sign of the learning rate was shifted from positive to negative depending
on whether inhibition was moving toward its normal (midpoint) value or
away from its normal value. The network was given 20 time steps to settle
into a stable state before the onset of the inhibitory oscillation. Figure 8
shows how inhibition was oscillated on each trial and how the sign of
the learning rate was changed as a function of the phase of the inhibitory
oscillation.

Appendix B: Effects of Hidden Layer Size

In this simulation, we show that the oscillating algorithm can take advan-
tage of additional hidden layer resources to store more patterns and to
more accurately represent the structure of the input space. Specifically, we
explored the effect of increased hidden layer size (120 versus 40 units) on the
oscillating algorithm, Leabra, and Leabra-Error. The hidden layer k value
was adjusted as a function of hidden layer size to ensure that (on average)
20% of the hidden units would be active for both the 120-hidden-unit simu-
lations and the 40-hidden-unit simulations. Input patterns had 57% average
overlap, and we used a test pattern noise value of .04.

Figure 9 shows the effects of hidden layer size on capacity and on the
fidelity of the network’s representations (as indexed by our “similarity
score” measure). There are two important results. First, increasing hidden
layer size boosts the number of patterns learned by the oscillating algo-
rithm. The effect of increasing hidden layer size is numerically larger for
the oscillating algorithm than for Leabra and Leabra-Error, so the capacity
advantage for the oscillating algorithm is preserved in the 120-hidden-unit
condition. The second important result is that for all three algorithms, our
input-hidden similarity metric (as described in section 3.1.2) is substantially
larger for the large network simulations: For the oscillating algorithm, the

How Inhibitory Oscillations Can Train 1605

Time Elapsed (Number of Time Steps)

0 20 40 60 80 100

Le
ar

ni
ng

R
at

e

-0.06

-0.03

0.00

0.03

0.06

In
hi

bi
to

ry
O

sc
ill

at
io

n

-2

-1

0

1

2

3

Learning Rate
Inhibitory Oscillation

Figure 8: Illustration of how inhibition was oscillated on each trial. At each time
step, the inhibitory oscillation component depicted on this graph was added to
the value of inhibition computed by the kWTA algorithm. The graph also shows
how the sign of the learning rate was set to a positive value when the inhibitory
oscillation was moving toward its midpoint, and it was set to a negative value
when the inhibitory oscillation was moving away from its midpoint.

similarity score is .576 for the 40-unit simulation and .788 for the 120-unit
simulation.

Appendix C: Effects of Hidden Layer Oscillations

For simplicity, the oscillating algorithm simulations oscillated inhibition in
the input-output layer but not the hidden layer. In this simulation, we show
that the same qualitative pattern of results is obtained when inhibition is
simultaneously oscillated in both the input-output layer and in the hidden
layer.

We selected hidden layer oscillation parameters such that over the course
of training, the effect of the inhibitory oscillation on network activity (oper-
ationalized as the difference in average network activation from the peak of
the inhibitory oscillation to the trough of the oscillation) was approximately

1606 K. Norman, E. Newman, G. Detre, and S. Polyn

Oscillating Algorithm
Leabra
Leabra-Error

Capacity as a Function of Hidden-Layer Size
57% Average Input Overlap, Test Noise .04

Number of Hidden Units

40 120

N
um

be
r

of
P

at
te

rn
s

Le
ar

ne
d

0

50

100

150

200

A

Number of Hidden Units

40 120

In
pu

t-
H

id
de

n
S

im
ila

rit
y

S
co

re

0.0

0.2

0.4

0.6

0.8

1.0

Similarity Score as a Function of Hidden-Layer Size
57% Average Input Overlap

B

Figure 9: (A) Capacity scores (number of patterns learned out of 200) for the
oscillating algorithm, Leabra, and Leabra-Error, given 57% input pattern overlap
and .04 test pattern noise. Increasing hidden layer size increases the number
of patterns learned by the oscillating algorithm, and the oscillating algorithm
continues to perform well relative to Leabra and Leabra-Error. (B) Input hidden
similarity scores (see simulation 1 for how these were calculated) given 57%
input pattern overlap. All three algorithms show better similarity scores for the
larger network.

How Inhibitory Oscillations Can Train 1607

Effect of Hidden-Layer Oscillations on Capacity
57% Average Input Overlap

Test Pattern Noise (x 10-2)

0 2 4 6 8 10 12 14 16

N
um

be
r

of
P

at
te

rn
s

Le
ar

ne
d

0

50

100

150

200

Oscillating Algorithm with Hidden Oscillations
Oscillating Algorithm without Hidden Oscillations
Leabra
Leabra-Error

Figure 10: Capacity scores (number of patterns learned out of 200) for the
oscillating algorithm with and without hidden layer oscillations, given 57%
input pattern overlap. Results for Leabra and Leabra-Error are included for
comparison purposes. The same qualitative pattern of results is present both
with and without hidden layer oscillations.

equated for the input-output layer and the hidden layer.10 The simulation
used input patterns with 57% overlap.

The results of this simulation are shown in Figure 10. The oscillating algo-
rithm continues to outperform Leabra and Leabra-Error at learning highly
overlapping patterns, even with the addition of oscillations in the hidden

10 To equate the average effect of the inhibitory oscillation on activity in the input-
output layer versus the hidden layer, we ended up using a much smaller-sized oscillation
in the hidden layer than in the input-output layer: hidden oscillation min = −0.18 and
max = 0.10; for the input oscillation, we used our standard max = 1.96 and a slight
smaller than usual min = −1.11; we set the learning rate to .03. The input layer inhibitory
oscillation needs to be large in order to offset the strong (excitatory) external input coming
into the target units. Hidden units do not receive this strong external input, so less
inhibition is required to deactivate these units during the high-inhibition phase.

1608 K. Norman, E. Newman, G. Detre, and S. Polyn

layer. We did not attempt to fine-tune the performance of the model once we
added hidden oscillations, so the detailed pattern of results obtained here
(e.g., the fact that the network performed slightly better without hidden os-
cillations) should not be viewed as reflecting parameter-independent prop-
erties of the model. Rather, these results constitute an existence proof that
the oscillating algorithm advantages that we find in our “default parame-
ter” simulations (without hidden layer oscillations) can also be observed
in simulations with comparably sized hidden layer and input-output-layer
oscillations.

Acknowledgments

This research was supported by NIH grant R01MH069456, awarded to
K.A.N.

References

Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for
Boltzmann machines. Cognitive Science, 9, 147–169.

Almeida, L. B. (1989). Backpropagation in nonfeedforward networks. In I. Alek-
sander, (Ed.), Neural Computing, London: Kogan Page.

Anderson, M. C. (2003). Rethinking interference theory: Executive control and the
mechanisms of forgetting. Journal of Memory and Language, 49, 415–445.

Anderson, M. C., Bjork, E. L., & Bjork, R. A. (2000). Retrieval-induced forgetting:
Evidence for a recall-specific mechanism. Memory and Cognition, 28, 522.

Anderson, M. C., Bjork, R. A., & Bjork, E. L. (1994). Remembering can cause forget-
ting: Retrieval dynamics in long-term memory. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 5, 1063–1087.

Anderson, M. C., & Spellman, B. A. (1995). On the status of inhibitory mechanisms
in cognition: Memory retrieval as a model case. Psychological Review, 102, 68.

Berry, S. D. & Seager, M. A. (2001). Hippocampal theta oscillations and classical
conditioning. Neurobiology of Learning and Memory, 76, 298–313.

Bienenstock, E. L., Cooper, L. N., & Munro, P. W. (1982). Theory for the development
of neuron selectivity: Orientation specificity and binocular interaction in visual
cortex. Journal of Neuroscience, 2(2), 32–48.

Buzsaki, G. (2002). Theta oscillations in the hippocampus. Neuron, 33, 325–340.
Fox, E. (1995). Negative priming from ignored distractors in visual selection. Psycho-

nomic Bulletin and Review, 2, 145–173.
Freedman, J. L. (1965). Long-term behavioral effects of cognitive dissonance. Journal

of Experimental Social Psychology, 1, 145–155.
Glucksberg, S., Newsome, M. R., & Goldvarg, G. (2001). Inhibition of the literal: Filter-

ing metaphor-irrelevant information during metaphor comprehension. Metaphor
and Symbolic Activity, 16, 277–293.

Grossberg, S. (1976). Adaptive pattern classification and universal recoding I: Parallel
development and coding of neural feature detectors. Biological Cybernetics, 23,
121–134.

How Inhibitory Oscillations Can Train 1609

Grossberg, S. (1999). How does the cerebral cortex work? Learning, attention,
and grouping by the laminar circuits of visual cortex. Spatial Vision, 12, 163–
186.

Hasselmo, M. E. (1995). Neuromodulation and cortical function: Modeling the phys-
iological basis of behavior. Behavioural Brain Research, 67, 1–27.

Hasselmo, M. E., Bodelon, C., & Wyble, B. P. (2002). A proposed function for hip-
pocampal theta rhythm: Separate phases of encoding and retrieval enhance re-
versal of prior learning. Neural Computation, 14, 793–818.

Hinton, G. E. (1989). Deterministic Boltzmann learning performs steepest descent in
weight-space. Neural Computation, 1, 143–150.

Hinton, G. E., & Ghahramani, Z. (1997). Generative models for discovering sparse
distributed representations. Philosophical Transactions of the Royal Society (London)
B, 352, 1177–1190.

Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning in Boltzmann ma-
chines. In D. E. Rumelhart, J. L. McClelland, & PDP Research Group (Eds.),
Parallel distributed processing, Vol. 1: Foundations (pp. 282–317). Cambridge, MA:
MIT Press.

Holscher, C., Anwyl, R., & Rowan, M. J. (1997). Stimulation on the positive phase
of hippocampal theta rhythm induces long-term potentiation that can be depo-
tentiated by stimulation on the negative phase in area CA1 in vivo. Journal of
Neuroscience, 17, 6470.

Huerta, P. T., & Lisman, J. E. (1996). Synaptic plasticity during the cholinergic theta-
frequency oscillation in vitro. Hippocampus, 49, 58–61.

Hyman, J. M., Wyble, B. P., Goyal, V., Rossi, C. A., & Hasselmo, M. E. (2003). Stimu-
lation in hippocampal region CA1 in behaving rats yields long-term potentiation
when delivered to the peak of theta and long-term depression when delivered to
the trough. Journal of Neuroscience, 23, 11725–11731.

Marr, D. (1971). Simple memory: A theory for archicortex. Philosophical Transactions
of the Royal Society (London) B, 262, 23–81.

Mayr, U., & Keele, S. (2000). Changing internal constraints on action: The role of
backward inhibition. Journal of Experimental Psychology: General, 1, 4–26.

McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are com-
plementary learning systems in the hippocampus and neocortex? Insights from
the successes and failures of connectionist models of learning and memory. Psy-
chological Review, 102, 419–457.

McNaughton, B. L., & Morris, R. G. M. (1987). Hippocampal synaptic enhancement
and information storage within a distributed memory system. Trends in Neuro-
sciences, 10(10), 408–415.

Minai, A. A., & Levy, W. B. (1994). Setting the activity level in sparse random net-
works. Neural Computation, 6, 85–99.

Movellan, J. R. (1990). Contrastive Hebbian learning in the continuous Hopfield
model. In D. S. Tourtezky, J. L. Elman, T. J. Sejnowski, & G. E. Hinton (Eds.),
Proceedings of the 1990 Connectionist Models Summer School (pp. 10–17). San Mateo,
CA: Morgan Kaufmann.

Norman, K. A., Newman, E. L., & Detre, G. J. (2006). A neural network model of retrieval-
induced forgetting (Tech. Rep. No. 06-1). Princeton, NJ: Princeton University,
Center for the Study of the Brain, Mind, and Behavior.

1610 K. Norman, E. Newman, G. Detre, and S. Polyn

Norman, K. A., & O’Reilly, R. C. (2003). Modeling hippocampal and neocortical con-
tributions to recognition memory: A complementary-learning-systems approach.
Psychological Review, 4, 611–646.

O’Reilly, R. C. (1996). The Leabra model of neural interactions and learning in the neocortex,
Unpublished doctoral dissertation, Carnegie Mellon University.

O’Reilly, R. C. (2001). Generalization in interactive networks: The benefits of in-
hibitory competition and Hebbian learning. Neural Computation, 13, 1199–1242.

O’Reilly, R. C., & Munakata, Y. (2000). Computational explorations in cognitive neu-
roscience: Understanding the mind by simulating the brain. Cambridge, MA: MIT
Press.

O’Reilly, R. C., & Norman, K. A. (2002). Hippocampal and neocortical contributions
to memory: Advances in the complementary learning systems framework. Trends
in Cognitive Sciences, 12, 505–510.

Pineda, F. J. (1987). Generalization of backpropagation to recurrent neural networks.
Physical Review Letters, 18, 2229–2232.

Raghavachari, S., Kahana, M. J., Rizzuto, D. S., Caplan, J. B., Kirschen, M. P., Bour-
geois, B., Madsen, J. R., & Lisman, J. E. (2001). Gating of human theta oscillations
by a working memory task. Journal of Neuroscience, 9, 3175–3183.

Rizzuto, D. S., Madsen, J. R., Bromfield, E. B., Schulze-Bonhage, A., Seelig, D.,
Aschenbrenner-Scheibe, R., & Kahana, M. J. (2003). Reset of human neocortical
oscillations during a working memory task. Proceedings of the National Academy of
Sciences, 13, 7931–7936.

Rolls, E. T. (1989). Functions of neuronal networks in the hippocampus and neo-
cortex in memory. In J. H. Byrne & W. O. Berry (Eds.), Neural models of plasticity:
Experimental and theoretical approaches (pp. 240–265). San Diego, CA: Academic
Press.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal repre-
sentations by error propagation. In D. E. Rumelhart, J. L. McClelland, & PDP
Research Group (Eds.), Parallel distributed processing, Vol. 1: Foundations (pp. 318–
362). Cambridge, MA: MIT Press.

Seager, M. A., Johnson, L. D., Chabot, E. S., Asaka, Y., & Berry, S. D. (2002). Oscilla-
tory brain states and learning: Impact of hippocampal theta-contingent training.
Proceedings of the National Academy of Sciences, 99, 1616–1620.

Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and neural
representation. Annual Review of Neuroscience, 24, 193–216.

Toth, K., Freund, T. F., & Miles, R. (1997). Disinhibition of rat hippocampal pyramidal
cells by GABAergic afferents from the septum. Journal of Physiology, 500, 463–474.

Received November 8, 2004; accepted December 13, 2005.

