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1 Introduction

• Classification methods have been successfully applied 
to pattern extraction from fMRI (e.g. [1,2]).  

• Most classification approaches have treated individual 
voxels as features, ignoring the spatial correlation of 
activity between voxels.  

• The present method, adapted from computer vision, 
incorporates spatial information via:

1. Richer features that capture correlation between 
adjacent regions

2. AdaBoost as a multivariate feature selector
• This method can improve classification accuracy and 

has the potential for discerning which types of neural 
features are most useful for discriminating between 
cognitive states.

4 Example Features on Actual Image
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One subject’s left hemisphere ventral temporal region at one TR

7 Comparisons: AdaBoost vs. Artificial Neural 
Networks, Richer Features vs. Single Pixels
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8 Performance by Feature Set Size
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9 EBC Competition Data

• Raw pixels with no feature selection: AdaBoost versus 
ANN
– Subject 1: AdaBoost better on 29 of 30 regressors; 

average relative accuracy change: 30.6% 
– Subject 2: AdaBoost better on 28 of 30 regressors; 

average relative accuracy change: 24.2% 
• 5 random 5% AdaBoost runs versus raw pixels

– Subject 1: Richer features better on 57% of runs; 
average relative accuracy change: .3%

– Subject 2: Richer features better on 67% of runs; 
average relative accuracy change: 1%

10 Accuracy by Rectangle Area

• The optimal spatial 
frequency for fMRI
classification is 
unknown

• The random feature 
set classifiers with 
AdaBoost
outperform 
classifiers using 
features of specific 
sizes

• AdaBoost appears 
to “find” the 
important features
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11 Conclusions

• Novel approach for classifying fMRI images
– Use of features that capture spatial information
– Multivariate feature selection

• Potential benefits
– Improve classification accuracy directly
– Improve classification indirectly by revealing important 

features
– Useful test-bed for exploring neuroscientific questions

• e.g. What is the optimal spatial frequency for classification?

• Generally a moderate classification improvement 
– Varies across subjects
– Not clear if justifies added computation

• More exploration of feature importance is warranted
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5 AdaBoost as Feature Selector and Learning 
Algorithm

• Performs multivariate feature selection
• Theoretically and empirically less sensitive to large 

feature set sizes
• Weak classifier: binary classifier that is slightly better 

than random guessing
• Basic idea: combine many weak classifiers into a strong 

classifier
• Algorithm (Freund and Schapire, 1996)

– Assign uniform weights to training instances 
– On each of T rounds

• Select new weak binary classifier based on learning algorithm
• Increase relative weights of instances incorrectly classified
• Assign weight to the weak classifier based on training accuracy

– Final classifier: weighted vote over weak classifier outputs

6 Algorithm Evaluation Experiments

• Instances: individual TRs from same subject 
• Target classes: 7 object categories
• Training: 1000 AdaBoost rounds over 8 “leave one run 

out” cross-validation runs
• Weak classifiers: thresholded features from all 

permutations of:
– 4 numbers of rectangles + 2 orientations if applicable = 6 types
– all 100 size combinations between 1x1 and 10x10
– all positions in image

• Due to enormous feature space (1.2 million features), 
random feature selection was performed
– Chose percentage of total possible feature set size
– Selected feature type and size permutations randomly
– Computed for all positions in both hemispheres

2 Neuroimaging Methods

• Two subjects underwent fMRI studies on a 3.0 Tesla 
scanner while performing a 1-back recognition task of 
images from seven categories:
– female and male human faces
– monkey and dog faces
– houses, shoes, and chairs

• 8 runs of 10 2-second TR intervals for each of the 7 
stimuli classes were obtained.
– First 10 TRs out of 17 were selected due to adaptation effect

• Cortical surface mapping was performed to produce a 
2D image reflecting spatial adjacencies.

• Analyses were confined to the Ventral Temporal region.

3 Image Features

• Instead of individual 
pixels, richer features are 
used for classification.

• Mean activity in the white 
regions are subtracted 
from mean activity in the 
gray regions.

• Features are 
characterized by:
– number of rectangles (1-4)
– orientation
– size (vert. and hoz.)
– position within image

a) 2-rectangle horizontal
b) 2-rectangle vertical
c) 3-rectangle horizontal
d) 4-rectangle
Not shown: (1-rectangle and 
3-rectangle vertical)Features derived from Viola and Jones, CVPR, 2001
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