
Introduction

The effect of list strength on 
recognition memory has been the 
subject of intense scrutiny over the 
past decade:

Is there a COST associated with 
memory strengthening, whereby 
strengthening memory for some list 
items impairs recognition of other 
(non-strengthened) list items? 

Compare: 

- study Apple, Robot,  vs. 
- study Apple, Robot, Robot, Robot

=> Does strengthening your 
      memory for "Robot"
      hurt recognition of "Apple"?

Several studies, starting with 
Ratcliff et al. (1990) have failed to 
find a list strength effect (LSE) on 
recognition.

Math models of recognition have 
undergone substantial revision to 
accommodate this (null) finding.

However, the range of conditions 
under which the LSE has been 
studied is still limited -- just 
because the LSE is sometimes null 
does not mean it will always be 
null!

Overview

In the theory section of the poster (outlined in GREEN), I present a 
new, biologically-based dual-process neural network model of 
recognition memory. (Norman & O'Reilly, in prep.)

The model predicts that an LSE should be present for one process that 
contributes to recognition (hippocampally-driven recall) but not for 
the other (neocortically-driven familiarity).

=> This prediction implies that an LSE on recognition should be 
present whenever recall is making a substantial contribution to 
recognition (relative to familiarity). 

In the data part of the poster (outlined in BLUE), I present several new 
list strength experiments that test this hypothesis.
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Modeling the Neural Basis of Recognition
Our model focuses on the contributions of two brain structures to 
recognition memory:

- the hippocampus
- medial temporal neocortex (MTLC),
 which serves as the interface between 
 the hippocampus and the rest of neocortex

Lesion evidence indicates that:
- the hippocampus is essential for recall
- when the hippocampus is lesioned, MTLC can support 
  some degree of recognition based on nonspecific feelings 
  of familiarity (for a review, see Aggleton & Brown, 1999)

Norman & O'Reilly have constructed neural network models of 
hippocampus and MTLC -- the models can be used to simulate these 
structures' (respective) contributions to recognition memory.

The models incorporate several key principles of neural computation, 
including -- but not limited to -- Hebbian LTP/LTD (long-term 
potentiation/depression) and inhibitory competition between neurons 
(O'Reilly & Munakata, 2000).
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Hippocampal Recall
The hippocampal network rapidly 
memorizes patterns of cortical activity 
in a manner that supports subsequent 
recall, based on partial cues.

The hippocampus links input patterns 
to clusters of units in region CA3, 
which are linked back to a copy of the 
input (via region CA1).

Hippocampal processing can be 
understood in terms of the interplay 
between pattern separation and pattern completion.

To apply the hippocampal model to recognition, we examine the extent to which 
the test cue is recalled:

Recall measure = (# of recalled features that match the test cue)
                              - (# of recalled features that mismatch the test cue)

False recall is very rare in the hippocampus because of the 
pattern separation/completion dynamic...

=> lures have to be very similar to studied items to trigger pattern completion
=> when pattern completion occurs, features of the studied item are recalled, 
      and the lure can be rejected based on mismatch between the test cue and    
      recalled features   
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To minimize interference between 
traces, the hippocampus is biased 
to assign relatively non-
overlapping (pattern-separated) 
representations to stimuli.

However, if an input pattern overlaps 
strongly with a previously studied input, 
the second pattern will activate the CA3 
representation of the first pattern 
(pattern completion), and recall occurs.
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Neocortical 
Familiarity

Neocortex learns gradually, integrating across 
events to arrive at a representation of what is 
generally true in the environment. 
(McClelland et al., 1995)

Neocortex assigns 
similar representations 
to similar stimuli => 
this allows neocortex
to represent what 
different events have
in common

How can neocortex contribute to recognition 
after a single study exposure, if it is supposed 
to learn slowly (integrating over events)?

- when an item is studied, Hebbian learning 
tunes a small number of units to respond 
strongly to the item's features; these units 
inhibit units that are less strongly active

Thus, as items become more familiar, 
representations become sharper:  

- unfamiliar stimuli weakly activate
  a large number of units
- familiar stimuli strongly activate a 
  relatively small number of units 

To index sharpness -- and thus familiarity -- 
we compute the following measure:
average activity of the K most active units 
(K is a model parameter)

Simulations show that the neocortical 
familiarity measure increases as a function of 
"global match"; the familiarity of nonstudied 
items increases smoothly as a function of their 
similarity to studied items.

List Strength Simulations

PARADIGM used in simulations and subsequent 
experiments:

Subjects study target items (which are later tested) and 
interference items (which are not tested).

compare two conditions: 

=> in the weak interference condition, interference items  
     are studied once
=> in the strong interference condition, interference items  
     are studied multiple times

Subjects are given a recognition test consisting of target 
items and nonstudied lure items.

=> if recognition is better in the weak interference 
condition, this constitutes a list strength effect!

SIMULATION: 

parameters:

-10 studied items, 10 interference items,  1X vs. 2X 
strengthening, 20% overlap  between input patterns

result:

- There was a list strength effect for hippocampal recall but 
  not for neocortical familiarity!

List Strength Effects on Recognition
in Hippocampus and Neocortex
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Explaining the Recall LSE

As a general principle, interference occurs in neural network models whenever items have 
overlapping representations (i.e., they activate the same hidden units)

This diagram illustrates
interference between 
memory traces.
 
When pattern A is studied:

Weights to features shared
by patterns A and B increase 
(due to Hebbian LTP)

However, weights to unique, 
discriminative features
of pattern B decrease
(due to Hebbian LTD)

This latter factor (LTD) hurts memory for pattern B!

Interference occurs in the hippocampus because:

- even though there is less overlap between representations of list items in the hippocampus
  (vs. neocortex), there is typically some overlap in the hippocampus

=> every time the hippocampal representations of two studied items overlap, the representation of the 
first item is weakened (due to Hebbian LTD)

=> the only time we would expect NO interference in the hippocampus is when cortical memory 
traces are very distinctive; in this case, there might not be enough hippocampal overlap to result in 
noticeable interference

This histogram shows the distribution 
of recall scores for studied items, as a
function of interference

Interference pushes the studied recall 
distribution towards zero.

As mentioned earlier, false recall
of lure items is rare.  In this simulation,
recall of lure items was at floor in both
conditions: > 97% of lure items triggered zero recall...

Since interference shifts the studied recall distribution to the left, and the lure recall distribution is
unaffected by interference (due to floor effects), the net effect is a decrease in d'. 
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Explaining the (Null) Familiarity LSE
Recognition discrimination in neocortex depends on the fact that -- because of learning -- the network is more sensitive 
to (i.e., has stronger weights to) the discriminative features of studied items than to the discriminative features of lures.  
Note that sensitivity to features shared by studied items and lures (e.g., context; prototypical stimulus features) does not 
benefit recognition performance.  Put another way: Recognition is a function of the gap in the network's sensitivity to 
discriminative features of studied items vs. lures.

This graph illustrates how interference affects the network's 
sensitivity to discriminative and non-discriminative (shared) features
of studied items and lures. Interference has two primary effects:

- Overall, network becomes less sensitive to discriminative
  features of individual items, and more sensitive to non- discriminative, 
  shared features => this tends to hurt recognition performance

- However, there is also an interaction, whereby the effects of interference are stronger for lure items than 
   studied items:  Sensitivity to lure items' features decreases more rapidly than sensitivity to studied  items' features 
   => the gap in sensitivity between studied items and lures increases,  and this tends to boost recognition performance.

- The second effect (an increase in the studied-lure "sensitivity gap") initially outweighs the first (an overall decrease in 
  sensitivity to discriminative features), causing a slight increase in d' => However, the overall decrease in sensitivity to 
  discriminative features eventually takes its toll, and d' starts to decrease

The fact that interference affects studied items less than lures can be explained in terms of differentiation (Shiffrin et al., 
1990; McClelland & Chappell, 1998) -- strengthening an item's representation makes it more selective, such that it is
more strongly activated by the item itself, but less strongly activated by other, interfering items

Differentiation is a simple consequence of Hebbian learning!  Referring back to the 6-neuron diagram (on the previous 
page), studying pattern A has two consequences: 
- it strengthens weights to the features of pattern A (Hebbian LTP), but
- it weakens weights to the (discriminative) features of pattern B (Hebbian LTD)
... as a result, the receiving unit fires more to pattern A but less to pattern B.

=> effectively, studying an item pulls its representation away from other (dissimilar) items' representations in feature space. 
Because studying an item decreases representational overlap with other items, studied items' representations suffer less 
interference than nonstudied items' representations! 

This graph shows how list strength affects studied and lure familiarity.
Initially, the familiarity gap between studied items and lures increases 
because of differentiation (leading to an increase in d').

Then, the gap decreases (leading to a decrease in d') as the network becomes 
increasingly sensitive to non-discriminative prototype/context features 
(at the expense of representing discriminative features).

BOUNDARY CONDITIONS:
The differentiation dynamic only holds when items do not overlap too strongly. When items are very similar to one 
another, studying an item makes its representation more (not less) similar to other items' representations => in this case, 
studied items suffer more interference than lures and d' decreases  monotonically as a function of interference.

Asymptotically (with enough interference), the network will always degrade to the point where it only represents what 
items have in common (e.g., context info), but not what makes items distinct from one another -- at this point, d' = 0.  
The amount of overlap between items determines how quickly the network arrives at this degenerate state (more 
overlap => faster degeneration), and what trajectory the d' scores follow (i.e., do they increase, then decrease, or do they 
decrease monotonically). 
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Testing the 
Model's 

Predictions

To recap: the model predicts 
that list strength...

- should impair recognition 
based on the hippocampal 
recall process

- should not impair recognition 
based on the cortical familiarity 
process

... assuming that overlap 
between items is not extremely 
high (in which case both 
processes should show an LSE), 
or extremely low (in which case 
neither process should show an 
LSE)

=> this implies that an LSE on 
recognition should be present 
whenever recall is making a 
substantial contribution 
(relative to familiarity)

Existing data:

- some studies have found an 
LSE on cued recall (e.g., 
Kahana, submitted), but...

- all studies that have looked for 
an LSE on recognition have 
failed to find one! 

maybe recall was not making 
enough of a contribution...
 
Goals for experiments:

- to show that an LSE on 
recognition emerges when 
recall is contributing (exp. 1)

- to obtain direct evidence that 
list strength affects recall but 
not familiarity (exp. 2)

Expt. #1: Filter by Confidence Ratings
Several studies (e.g., Yonelinas et al., 1996; Yonelinas, in press) have found 
that recall is associated with high confidence recognition responses, but 
familiarity is associated with a wide range of confidence responses

=> this implies that we can (at least partially) isolate the contribution of 
recall by focusing on high-confidence responses

IF:         high-confidence "old" responses are primarily driven by recall
AND:    there is an LSE on recall
THEN:  if we restrict the analysis to high confidence "old"responses,
              we should see a list strength effect on recognition accuracy 
            
METHOD:

- Subjects rated recognition confidence from 1 (sure new) to 6 (sure old); 
recognition accuracy was computed using different confidence thresholds 
for accepting an item as "old", e.g., (conf. > 3) = "old"; (conf. <= 3) = "new"

- The encoding task ("would this item fit in a small box"; 1.15 sec per 
word) was  designed to yield memory traces rich enough to support some 
recall, but not so  distinctive as to yield ceiling effects on recall   

RESULTS:

As predicted, a significant LSE 
on recognition accuracy
emerged when accuracy (A')
was computed using a high 
confidence threshold
(conf. > 4 or 5) for acceping 
an item as "old". 

ROC data indicate that recognition
accuracy was significantly 
higher in the Weak Interference 
condition, Ag = .914 in the Weak
Interference condition and Ag =.881
in the Strong Interference condition 
(Ag is an assumption-free estimate
of the area under the ROC,
Macmillan & Creelman, 1991). 

LSE as a Function of Criterion
Placement (in A' units)
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Experiment #2:  Self-
Report Measures of 
Recall & Familiarity

PARADIGM:
Whenever a subject thinks that an item 
was studied, ask them if they remember 
specific details from when they studied the 
item, or it just seems familiar.

Jacoby et al. (1997) showed that, if you 
assume recall and familiarity are 
independent, it is possible to use 
subjective-report data to quantiatively 
estimate:

1) P(R): the probability of recalling a 
    studied item, and
2) Fd': the extent to which familiarity  
    discriminates between studied items and  
    lures

PREDICTIONS:
List strength should affect the derived 
measure of recall, P(R), but list strength 
should not affect the derived measure of 
familiarity, Fd'

Methodologically, the paradigm was very 
similar to the paradigm used in Expt. 1, 
except "remember/familiar" responses 
were obtained instead of confidence 
ratings.

RESULTS:

As predicted, the LSE on Recall was 
highly significant, and the LSE on 
Familiarity was not significant; consistent 
with other list strength experiments, the 
overall LSE on Recognition was not 
significant.
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Future Directions:  Using Related 
Lures to Boost the Contribution 

of Recall...
The model predicts that our ability to discriminate between 
studied items and related lures depends critically on the 
hippocampal recall process. 

=> the cortical familiarity model performs poorly on tests 
     with related lures, because these lures trigger strong 
     feelings of familiarity, leading to false recognition (and 
     low d' scores); the hippocampal model performs better, 
     because of its ability to assign distinct (pattern-separated) 
     representations to similar items

IF recognition tests with related lures load heavily on the 
recall process, THEN increasing list strength should hurt 
performance on recognition tests with related lures (moreso 
than on tests with unrelated lures). 

Face morphing can be used to create face pairs that are related 
to one another. An experiment using related vs. unrelated face 
pairs is in progress now...

STUDY:

then TEST:

studied  vs. related lure           or        studied  vs. unrelated lure

List strength should impair studied vs. related judgments more 
than studied vs. unrelated judgments!



Summary and Conclusions

I presented a new, biologically-based dual-process network model of recognition memory, which predicts that a list 
strength effect should be obtained for hippocampal recall but not neocortical familiarity (assuming that between-trace 
overlap is neither extremely high nor extremely low). This implies that an LSE on recognition should be present 
whenever recall is making a large contribution to recognition performance (relative to familiarity). In two separate 
experiments, I obtained evidence consistent with this prediction. 

=> Yonelinas et al. (1996) and others have found that recall is associated with high-confidence recognition responses.
In Experiment 1, I found a significant recognition LSE when I computed recognition accuracy based on high confidence 
"old" responses. Lowering the confidence threshold (which  allows for a greater contribution of familiarity) eliminated 
the recognition LSE.  The area under the ROC was also significantly affected by list strength in this experiment.  These 
findings demonstrate that (contrary to published findings) recognition sensitivity sometimes is affected by list strength.

=> In Experiment 2, I found that measures of recall- and familiarity-based discrimination derived from self-report data 
(using the IRK procedure; Jacoby et al., 1997) were differentially affected by list strength. There was a significant 
LSE for the recall measure but not the familiarity measure.

THEORETICAL IMPLICATIONS:
Our hippocampal and neocortical models -- like all neural network models where there is overlap between traces -- 
suffer from interference at storage; new learning experiences degrade the memory traces of other stored items. 

- This differs from other recognition models (e.g., REM; Shiffrin & Steyvers, 1997), which posit that memory traces 
   are stored separately, and that interference arises from spurious trace activation at retrieval.

Murnane & Shiffrin (1991) questioned whether models that posit interference at storage could account for the null 
LSE on recognition. Our cortical-model simulations show that biologically realistic neural network models (with 
overlapping representations) are capable of accommodating the null list strength finding 

Although there are some similarities between our account of the null LSE on familiarity, and REM's account (they 
both rely on the differentiation principle, albeit in different ways), the accounts are different enough that it should be 
possible to tease them apart empirically.  In particular, our model's prediction that interference causes cortical traces to 
degrade (in a very predictable way -- cortical representations become more sensitive to shared features, and less 
sensitive to discriminative features) seems very distinct from the predictions of models like REM (which posit, for 
some parameter settings, that strengthening interfering items can actually remove interference).
 
LIST LENGTH:
Although extant studies have failed to obtain an effect of list strength on recognition, several studies have found that 
increasing list length -- adding new items to the study list -- impairs recognition (e.g., Ohrt & Gronlund, 1999).
Our model can accommodate the length/strength dissociation given the added postulate that the first presentation of an 
item leads to substantially more weight change than subsequent presentations of an item. 

If this is true, presenting several items for the first time will lead to more weight change than repeating already-studied 
items, and therefore is more likely to push the network into the degenerate range where shared features are represented 
at the expense of discriminative features (causing a decrease in d'). There is good neurobiological evidence for this 
claim! The effect of a stimulus on synaptic weights (LTP) is transiently quite large relative to its stable long-term value 
(e.g., Malenka & Nicoll, 1993).  All studied stimuli incur this large, transient weight change. Stimulus repetitions 
result in adjustments to the stable long-term weight value that are small relative to the transient effect (and thus less 
likely to cause interference).

PREDICTION: If list length effects on familiarity are caused by the 
large, transient component of LTP, it should be possible to eliminate
the list length effect on familiarity by waiting for the transient component
to decay to baseline (on the order of 10-20 minutes).
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