

Decoding and Training Sustained Attention with Real-Time fMRI

Megan T. deBettencourt¹, Ray F. Lee¹, Jonathan D. Cohen^{1,2}, Kenneth A. Norman^{1,2}, Nicholas B. Turk-Browne^{1,2}

VET NOV TES TAM EN TVM

¹Princeton Neuroscience Institute, ²Department of Psychology, Princeton University

Introduction

Selective attention fluctuates when sustained over time, and behavioral errors can occur when attention lapses

Detecting attentional fluctuations could allow for the delivery of timely feedback when lapses occur

How can attentional fluctuations be measured? What is the training benefit of real-time feedback?

Design

Real-Time Decoding

fMRI Results

Robust whole-brain decoding of attentional state

Relating behavior to classifier

Greater evidence of attended category before (temporal and parietal) and after avoiding lure

Initial Training Results

Training experience

What provides the best opportunity to learn?

Yoked-Control improvement

What happened when yoked feedback was accidentally accurate?

Discussion

Real-time MVPA over whole brain can measure fluctuations in sustained attention and predict behavior

Preliminary evidence that real-time neurofeedback can be used to train selective attention

In particular, rapid fluctuations in attentional state provide an opportunity to learn from (accurate) feedback

Supported by NSF GRFP # DGE1148900 to M.T.dB.