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IV. Article Definition

Computational models of episodic memory constitute mechanistically explicit theories of how we recall

previously experienced events, and how we recognize stimuli as having been encountered previously.

Because these models concretely specify the algorithms that govern recall and recognition, researchers

can run computer simulations of these models to explore how (according to a particular model) different

manipulations will affect recall and recognition performance.

V. Introduction

Episodic memory refers to our ability to remember specific, previously experienced events:  We

can recall (i.e., mentally re-create) previously experienced events, and we can recognize a stimulus as

having been encountered previously.  From a computational standpoint, the unifying feature of episodic

memory tests is the need to isolate the memory trace corresponding to the to-be-remembered (target)

event.  Recall tests ask subjects to isolate the target event's memory trace in order to retrieve some

missing detail, and recognition tests ask subjects to assess whether the target event is actually stored in



3

memory.  On both recall and recognition tests, good performance is contingent on the system's ability to

screen out the effects of non-target memory traces.

Computational models of episodic memory can be divided into two categories: abstract  and

biological.  Abstract models make claims about the "mental algorithms" that support recall and

recognition judgments, without addressing how these algorithms might be implemented in the brain.

The primary goal of these models is to account for challenging patterns of behavioral recall and

recognition data from list learning paradigms (where stimuli are presented as part of a well-defined

"study episode"; then, subjects are asked to recall specific events from the study episode, or to

discriminate between stimuli that were and were not presented during that episode).  Biological models,

like abstract models, make claims about the computations that support recall and recognition judgments;

the main difference is that they also make specific claims about how the brain gives rise to these

computations. This brain-model mapping provides an extra source of constraints on the model's

behavior.

VI.  Main Text

1.  Abstract models

Abstract global matching memory models take a unified approach to recognition and recall.

There are several different global matching models; this article will focus on a single, representative

model (MINERVA 2; Hintzman, 1988; see Clark & Gronlund, 1996, for an explanation of differences

between the various models).  MINERVA 2 (M2) represents each study list item as a vector where each

element equals 1, -1, or 0.  Each element corresponds to a particular feature that may or may not be
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present in that item; a 1 value indicates that the feature is present, a -1 value indicates that the feature is

absent, and a 0 value indicates that the feature value is unknown.  Thus, the vectors corresponding to

different items will overlap (i.e., have the same value for a particular vector element) to the extent that

they consist of the same features.  M2 posits that the vectors corresponding to different studied items are

stored separately in memory (but see Murdock, 1993, for an example of an abstract model that posits

that memory traces are stored in a composite fashion; Murdock's TODAM model stores items by adding

together vectors corresponding to different items).  When an item is presented at test, M2 computes how

well the test item vector matches all of the different vectors stored in memory.  On recognition tests, M2

sums together all of these individual match scores to get a "global match" (familiarity) score; recognition

decisions are made by comparing familiarity scores to a criterion value -- i.e., respond "studied" if an

item's familiarity score exceeds the criterion value, respond "nonstudied" otherwise.  M2 implements

recall by computing a weighted average of all of the items stored in memory, where each item is

weighted by its match to the test probe.   Thus, M2 generates a vector output on recall tests and a scalar

output on recognition tests, but both recall and recognition depend on the same underlying match

computation.

1.1.  How match is computed

In global match models like M2, the match computation weights multiple matches to the same

trace more highly than the same total number of feature matches, spread across multiple memory traces

(e.g., a test cue that matches two features of one item yields a higher familiarity signal than a test cue

that matches one feature each of two items).  Put another way:  The match computation is sensitive to

whether the features of the test probe were studied together (vs. separately).  M2's match computation
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achieves this sensitivity to conjunctions by first computing the dot product of the cue vector and each

memory trace vector (this gives the proportion of matching features minus the proportion of

mismatching features for each memory trace) and then cubing the dot product score for each trace;

finally, M2 adds together the cubed match scores to get the familiarity score for that cue.   This

algorithm yields sensitivity to conjunctions insofar as matches spread across multiple stored traces are

combined in an additive fashion, but -- because of the cube rule -- multiple matches to a single trace are

combined in a positively accelerated fashion.

Sensitivity to conjunctions ensures that one strong match outweighs the effects of several weak

matches.  Given the fact that different episodes share features to some extent, it is inevitable that test

probes will match at least one feature from several memory traces other than the target trace.  In models

that lack sensitivity to conjunctions, these small matches -- in aggregate -- would swamp the one large

match score associated with the target trace.  Figure 1 illustrates how sensitivity to conjunctions

(implemented using the cube rule) helps reduce interference in M2.

--------------------------------

Insert Figure 1 about here

--------------------------------

1.2.   Modeling interference data

1.2.1  List length effects
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While sensitivity to conjunctions minimizes interference caused by low amounts of cue-trace

overlap, there is no way to completely eliminate interference caused by higher amounts of cue-trace

overlap.  There will always be non-target memory traces that, by chance, match the test probe strongly;

these strong, spurious matches add noise to the global match signal and degrade performance.

All global matching models predict that adding new items to the list (increasing list length) will impair

both recognition and recall, by increasing the odds that a strong (but spurious) match will occur.  In

keeping with this prediction, a very large number of studies have obtained list length effects for

recognition and recall, although it is becoming clear that list length effects are not always obtained for

recognition (see Dennis & Humphreys, 2001, for discussion of this issue).

1.2.2  Modeling the null list strength effect

One finding that global match models initially failed to predict is the null list strength effect

(LSE) for recognition:  Ratcliff, Clark, & Shiffrin (1990) found that strengthening some list items, by

presenting them repeatedly or for a longer duration, does not impair recognition of other (non-

strengthened) list items.  In models like M2, strengthening is operationalized by storing extra copies of

an item to memory, or by increasing the probability of successful feature encoding.  Both of these

manipulations increase the global match score triggered by the strengthened item (thereby allowing the

model to accommodate the finding that strengthening an item improves memory for that item).

However, strengthening an item's memory trace also increases the mean and variance of the global

match signal triggered by other items (intuitively: random, spurious match between the test probe and

memory trace X has a larger effect on the global match signal when X is strong vs. when X is weak);

this increase in variance leads to decreased recognition performance.
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Researchers have been working from 1990 to the present to modify global matching models so

they can accommodate the null recognition LSE obtained by Ratcliff et al. (1990).  One promising

approach to modeling the null LSE has been to posit that differentiation occurs as a consequence of

strengthening (Shiffrin, Ratcliff, & Clark, 1990); the gist of differentiation is that -- as participants

acquire experience with an item -- the item's representation becomes increasingly refined, making it less

likely that it will spuriously match some other item at test.

One example of an abstract model that incorporates differentiation is the REM model described

by Shiffrin & Steyvers (1997; see McClelland & Chappell, 1998, for a similar model).  REM uses a

"match" rule, based on Bayesian statistics, that computes the odds that the test probe and the stored trace

are the exact same item.  With this rule, a small amount of mismatch can have a very large effect; if you

are certain that a memory trace contains a particular feature, and you are certain that the test probe does

not contain that feature, the match value will be zero.  In REM, strengthening a memory trace increases

the number of encoded features; strong traces are less likely to trigger a spurious match because they are

more likely to contain features that mismatch the test probe.  Figure 2 illustrates this point.

--------------------------------

Insert Figure 2 about here

--------------------------------

1.2.3  Single-process vs. dual-process approaches

An important feature of abstract global match models is that they attempt to explain recognition

performance entirely in terms of the scalar familiarity signal.  This single-process approach contrasts

with dual-process theories of recognition, which posit that both familiarity and recall contribute to
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recognition performance (i.e., items can be called "old" because they trigger a nonspecific feeling of

familiarity, or because the subject specifically recalls some detail from when the item was studied).

Furthermore, the most prevalent dual-process theory (Jacoby, Yonelinas, & Jennings, 1997) posits that

the operating characteristics of familiarity and recall are qualitatively distinct; according to this theory,

familiarity is a signal-detection process (i.e., studied-item and lure familiarity are both normally

distributed, and the two distributions overlap extensively) but recall is a high-threshold process (i.e.,

recall is all-or-none; studied items are sometimes called "old" based on recall, but lure items are never

called "old" based on recall).  Note that recall can be applied to recognition in abstract models like M2

(e.g., by cuing with the test item and the comparing the recalled vector to the test item -- if they match

above a certain threshold, say "old").  However, recall-based recognition and familiarity-based

recognition have very similar operating characteristics in abstract models, because they are based on the

same underlying match computation; as such, adding a recall process typically does not affect these

models' recognition predictions. The only time that adding recall affects these models' performance is on

recognition tests where some kind of content has to be retrieved (e.g., an exclusion test, where subjects

have to say "old" to studied words from one list and "new" to studied words from another list).  Also,

some models derive different predictions for recall and familiarity based on the assumption that subjects

cue memory differently when they are trying to recall items (i.e., they are more likely to incorporate

context into the retrieval cue; Shiffrin et al., 1990); however, this is not a difference between recall and

familiarity per se.

It would be possible to build an abstract model that uses different match rules for recall and

familiarity-based recognition, in keeping with the idea that these systems have distinct operating

characteristics.  This has not occurred because, once recall and familiarity are allowed to use different

match rules, it is unclear how to constrain these (separate) systems based purely on behavioral data.
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Extant techniques for measuring the separate contributions of recall and familiarity to behavioral

recognition performance are controversial because they rely on assumptions about the properties of

recall and familiarity that can not be tested empirically (e.g., that recall and familiarity are stochastically

independent; for more on these techniques, see Jacoby et al., 1997).

2.  Biological models

  One way to further constrain dual-process models is to incorporate information about how recall

and familiarity are computed in the brain.  Biological models of episodic memory, like abstract models,

try to account for the widest possible range of behavioral findings; however, unlike abstract models,

biological models incorporate explicit claims about how the brain gives rise to recognition.  Biological

models of episodic memory have focused largely on the hippocampus, because neuropsychological data

unequivocally indicates that the hippocampus is necessary for recall.

2.1.  Modeling hippocampal contributions to episodic memory

Over the past decade, several researchers have developed biologically detailed computational

models of the hippocampus, with the goal of explaining how the hippocampus contributes to episodic

memory (e.g., Norman & O'Reilly, under review; Hasselmo & Wyble, 1997).  The aforementioned

models all view the hippocampus as a machine that is specialized for rapidly storing patterns of cortical

activity ("episodes") in a manner that minimizes interference and allows for pattern completion:

subsequent recall of entire stored patterns in response to partial cues.  Furthermore, these models make

similar -- albeit not identical -- claims about how different hippocampal substructures contribute to this
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process.  This article will focus on the Norman & O'Reilly Complementary Learning Systems (CLS)

neural network model, which has a hippocampal component (described in this section) and a cortical

component (described in the next section); a schematic diagram of the CLS hippocampal network is

shown in Figure 3.

--------------------------------

Insert Figure 3 about here

--------------------------------

In the CLS model, the hippocampal network binds together sets of co-occurring neocortical

features (corresponding to a particular episode) by linking co-active units in entorhinal cortex (EC -- the

neocortical region that serves as a gateway to the hippocampus) to a cluster of units in region CA3 of the

hippocampus; these CA3 units serve as the hippocampal representation of the episode.  Recurrent

connections between active CA3 units are strengthened. To allow for recall, active CA3 units are linked

back to the original pattern of cortical activity via region CA1.  Learning in the model occurs according

to a Hebbian rule whereby connections between units are strengthened if both the sending and receiving

units are active, and connections are weakened if the receiving unit is active but the sending unit is not.

At test, when a partial version of a stored EC pattern is presented to the hippocampal model, the

model is capable of reactivating the entire CA3 pattern corresponding to that item because of learning

that occurred at study; activation then spreads from the item's CA3 back to the item's EC representation

(via CA1).  In this manner, the hippocampus manages to retrieve a complete version of the EC pattern in

response to a partial cue.
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To minimize interference between episodes, the hippocampus has a built-in bias to assign

relatively non-overlapping (pattern separated) CA3 representations to different episodes.  Pattern

separation occurs because hippocampal units are sensitive to conjunctions of neocortical features; given

two neocortical patterns with 50% feature overlap, the probability that a particular conjunction of

features will be present in both patterns is much less than 50% (see O'Reilly & McClelland, 1994, for a

much more detailed treatment of pattern separation in the hippocampus, and for discussion of the role of

the dentate gyrus in facilitating pattern separation).  The hippocampal model is sensitive to conjunctions

because it uses sparse representations (where this sparseness is enforced by inhibitory competition); in

the model, a given input pattern only activates about 4% of the units in CA3 .  Inhibitory competition

forces units to compete to represent input patterns, and units that are sensitive to multiple features of a

given input pattern (i.e., feature conjunctions) are more likely to win the competition than units that are

only sensitive to single input features.

A key property of neural network models is that some degree of structural interference between

memory traces at storage is inevitable, assuming that there is overlap between memory traces (i.e.,

different items activate the same units).  Whenever there is overlap, sensitivity to features that are shared

across items increases, but sensitivity to features that are unique to specific items decreases.  Pattern

separation mechanisms in the hippocampus reduce structural interference (effectively preventing

catastrophic interference, where studying new items totally wipes out stored memory traces) but do not

eliminate interference entirely.  The view that degradation is inevitable contrasts strongly with models

like MINERVA 2 and REM, which posit that memory traces with overlapping features can be stored

separately, with no structural degradation (but do not explain how this could come about).

The raw output of the CLS hippocampal model is a vector comprised of recalled information.

Norman & O'Reilly (under review) apply the model to recognition by comparing the output vector
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(recall) to the input vector.  If recalled information matches the test probe, this constitutes evidence that

the test probe was studied; if recalled information mismatches the test probe, this is evidence that the test

probe was not studied; specifically, Norman & O'Reilly compute a recall score equal to the number of

matching features minus the number of mismatching features.  While the hippocampal model shows

good recognition discrimination in standard list-learning paradigms, there are several findings in the

recognition literature that the hippocampal model, taken by itself, can not explain.  For example, the

hippocampal model tends to underpredict false recognition.  Because of pattern separation, test cues

have to overlap strongly with studied patterns in order to activate the CA3 representations of these

studied patterns (thereby triggering recall); as such, the hippocampal model predicts that the memory

signal triggered by nonstudied lure items should be at floor, unless lures are highly similar to studied

items.  This prediction conflicts with the finding that false recognition rates are typically well above

floor in list-learning experiments.

2.2. Modeling neocortical contributions to episodic memory

One way to accommodate these issues with the hippocampal model is to argue that the

hippocampus is not the only structure that contributes to recognition memory.  Consistent with this

view, neuropsychological data indicates that medial temporal neocortex (MTLC) also contributes to

recognition -- patients with hippocampal damage but spared MTLC perform well above chance on

recognition tests.  Norman & O'Reilly (under review) have also constructed a neural network model of

MTLC to explore how this structure contributes to recognition memory.  In keeping with the

complementary learning systems view set forth by McClelland, McNaughton, & O'Reilly (1995),

Norman & O'Reilly posit that the primary function of neocortex (including MTLC) is to integrate across
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episodes to learn about the statistical structure of the environment.  In contrast to the hippocampal

model, which is biased to assign distinct representations to episodes and uses a large learning rate

(thereby allowing it to quickly memorize individual episodes), the MTLC model assigns overlapping

representations to similar episodes (thereby allowing it to represent what these episodes have in

common) and uses a relatively small learning rate.

A schematic diagram of the MTLC model is shown in Figure 4.  Because cortex uses a small

learning rate, it is not capable of pattern completion (recall) following limited exposure to a stimulus.

However, it is possible to extract a scalar signal from the MTLC model that reflects stimulus familiarity:

In the MTLC model, as items are presented repeatedly, their representations in MTLC become sharper:

Novel stimuli weakly activate a large number of MTLC units, whereas familiar (previously presented)

stimuli strongly activate a relatively small number of units.  Sharpening occurs because Hebbian

learning specifically tunes some MTLC units to represent the stimulus.  When a stimulus is first

presented, some MTLC units, by chance, will respond more strongly to the stimulus than other units;

these units get tuned by Hebbian learning to respond even more strongly to the item then next time it is

presented; and these strongly active units start to inhibit units that are less strongly active. To index

representational sharpness -- and through this, stimulus familiarity -- we measure the average activity of

the MTLC units that win the competition to represent the stimulus.  Because there is more overlap

between representations in MTLC than in the hippocampus, the MTLC signal has very different

operating characteristics than the hippocampal recall signal.  Whereas lures rarely trigger hippocampal

recall, Norman & O'Reilly (under review) showed that the MTLC signal tracks, in a graded fashion, how

similar the test probe is to studied items.

--------------------------------
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Insert Figure 4 about here

--------------------------------

2.3.  Some predictions of the CLS model

2.3.1.  Effects of hippocampal lesions

Because the CLS model maps clearly onto the brain, it is possible to use the model to address

neuroscientific data in addition to (purely) behavioral data.  For example, the model makes predictions

about how different kinds of medial temporal lesions will affect episodic memory.  One prediction is

that hippocampal lesions should impair performance on yes-no recognition tests with related lures (i.e.,

lures that are similar to specific studied items) more so than on tests with unrelated lures.  When lures

are not highly similar to studied items, both systems (MTLC and hippocampus) discriminate well, but

when lures are similar to studied items the hippocampus outperforms MTLC because of its ability to

assign distinct representations to similar stimuli, and its ability to reject lures when they trigger recall

that mismatches the test probe.  For evidence in support of this prediction see Holdstock et al. (in press).

2.3.2. Interference: A challenge for biological models

While the biological approach to episodic memory modeling has led to new insights into

episodic memory (and the brain basis thereof), this approach faces several challenges.  One major

challenge is accounting for the effects of interference (e.g., list length, list strength) on recognition and
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recall.  As discussed above, biological models generally predict some degree of structural interference

between memory traces at study -- i.e., learning about one item degrades the memory traces associated

with other items.  Several researchers have questioned whether models that posit structural interference

at storage could account for the null list strength effect on recognition sensitivity, because of this

pervasive tendency towards trace degradation.  However, Norman & O'Reilly (under review) showed

that biologically realistic neural network models with overlapping representations are, in fact, capable of

accommodating the null list strength finding. The CLS cortical model predicts a null list strength effect

for recognition sensitivity, given low-to-moderate levels of input pattern overlap, because (initially) the

model's responding to lures decreases as much as its responding to studied items as a function of

interference; as such, the distance between the studied-item and lure-item familiarity distributions stays

relatively constant, and discriminability does not decrease.

Importantly, the CLS model also predicts that list strength effects should be obtained for the

hippocampal recall process.  In the hippocampal model, interference degrades the model's ability to

recall studied items, and recall of lures tends to be at floor; because of this floor effect on lure recall,

interference has the effect of pushing together the studied-item and lure-item recall distributions, leading

to decreased discriminability. For evidence in support of the CLS model's list strength predictions, see

Norman & O'Reilly (under review).

3. Summary

Abstract episodic memory models like M2 provide an elegant account, at the algorithmic level,

of our ability to recall and recognize specific events from our personal past.  These models posit that

recall and familiarity rely on the same "match" rule and thus have similar operating characteristics.  A
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potential weakness of abstract models is that they do not consider the neural plausibility of these

algorithms; it is very difficult to see how features of some abstract models (e.g., the total absence of

structural interference between traces at study in M2 and REM) could be implemented in the brain.

Recently developed biological episodic memory models seek to remedy this by establishing a

clear isomorphism between parts of the model and parts of the brain that have been implicated in

episodic memory (e.g., in neuropsychological studies).  The Norman & O'Reilly CLS model posits that

recall and familiarity have different operating characteristics, insofar as they rely on distinct neural

structures -- the hippocampus and medial temporal neocortex -- that differ in their architecture and

connectivity.  The hippocampus is more sensitive to feature conjunctions than cortex, which in turn

leads to less overlap between representations.  Low overlap makes it possible for the hippocampus to

rapidly memorize patterns without catastrophic interference (although interference still occurs), and it

also decreases the probability of false recognition, relative to what occurs in cortex.
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IX.  Glossary

Hippocampus#A structure located in the medial temporal lobe that supports recall of patterns of

neocortical activity.
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Medial temporal neocortex#A subregion of neocortex (consisting of the entorhinal, perirhinal, and

parahippocampal cortices) that serves as the interface between the rest of neocortex and the

hippocampus.

Neocortex#A sheet of neurons that covers the cerebral hemispheres, consisting of a hierarchy of

subregions that represent regularities in the environment at different levels of abstraction.

X.  Figure captions

NOTE:  Figures are attached as separate files:

444.Figure1.eps

444.Figure2.eps

444.Figure3.eps

444.Figure4.eps

Figure 1#Illustration of how MINERVA 2 (M2) computes global match.  For each of the two traces

stored in memory, M2 computes a match value = (number of matching features - number of

mismatching features) / (total number of nonzero features); then, M2 cubes these match values and adds

them together to get a familiarity score for that cue.  In this example, if match values are summed prior

to cubing, the summed match values are equivalent for the studied item and the nonstudied item.

However, if match values are summed after cubing, the studied item generates a much larger summed

match score than the nonstudied item.  Cubing benefits discrimination by minimizing the effect of weak

(partial) matches on the summed match score, relative to the effect of more complete matches.
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Figure 2#Illustration of how strengthening -- operationalized as more complete feature encoding -- can

reduce spurious matches. Question marks indicate features that were not encoded at study.  Prior to

strengthening (upper two panels), the studied item and the nonstudied item match stored traces equally

well; for both items, there is one trace that appears to match the test cue, i.e., there are some matching

features, and no mismatching features.  After strengthening (lower two panels), it is apparent that the

nonstudied item does not exactly match either of the stored traces.

Figure 3#Diagram of the CLS hippocampal network.  The hippocampal network links input patterns in

entorhinal cortex (EC) to relatively non-overlapping (pattern-separated) sets of units in region CA3;

recurrent connections in CA3 bind together all of the units involved in representing a particular EC

pattern; the CA3 representation is linked back to EC via region CA1.  Learning in the CA3 recurrent

connections, and in projections linking EC to CA3 and CA3 to CA1, makes it possible to recall entire

stored EC patterns based on partial cues.  The dentate gyrus (DG) serves to facilitate pattern separation

in region CA3; see O'Reilly & McClelland (1994) for details.

Figure 4#Diagram of the CLS cortical network.  The cortical network consists of two layers, an input

layer (corresponding to "lower" cortical regions that represent basic features of input patterns) and a

hidden layer (corresponding to MTLC).  Units in the hidden layer compete to encode (via Hebbian

learning) regularities that are present in the input layer.

XI.  Cross references to other articles
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573 -- Memory Models

571 -- Memory: Long-Term Memory

332 -- Neural Basis of Memory:  Systems Level

96 -- Catastrophic Interference in Connectionist Networks

311 -- Hippocampus

XII.  Suggestions for multimedia features

none

XIII.  Information on word processing package used

This text was composed using Microsoft Word 97 on a PC.

The figures were composed using Adobe Illustrator on a PC.  They are saved in Encapsulated PostScript

(EPS) format.
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