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Retrieval-induced forgetting (RIF) refers to the finding that retrieving a memory can impair subsequent
recall of related memories. Here, the authors present a new model of how the brain gives rise to RIF in
both semantic and episodic memory. The core of the model is a recently developed neural network
learning algorithm that leverages regular oscillations in feedback inhibition to strengthen weak parts of
target memories and to weaken competing memories. The authors use the model to address several
puzzling findings relating to RIF, including why retrieval practice leads to more forgetting than simply
presenting the target item, how RIF is affected by the strength of competing memories and the strength
of the target (to-be-retrieved) memory, and why RIF sometimes generalizes to independent cues and
sometimes does not. For all of these questions, the authors show that the model can account for existing
results, and they generate novel predictions regarding boundary conditions on these results.
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Over the past decade, several researchers (see M. C. Anderson,
2003) have argued that retrieving a memory can cause forgetting
of other, competing memories. Anderson has argued that this
retrieval-induced forgetting (RIF) effect is cue independent (i.e., it
generalizes to cues other than the previously utilized retrieval cue)
and that it is competition dependent (i.e., forgetting of a particular
memory is proportional to how strongly it competes; see M. C.
Anderson, 2003, for more discussion of these claims). Anderson
and others have marshaled an impressive array of evidence for
these principles, although not all studies have obtained results
consistent with these claims (e.g., Perfect et al., 2004).

The Scope of the Article

In this article, we present a new theory (implemented in neural
network form) of how the brain gives rise to RIF effects. The
introduction to the article consists of three parts: In the RIF Basics
section, we describe the RIF paradigm, and we review evidence for
cue-independent forgetting and competition-dependent forgetting.
In the RIF as Competitor Weakening section, we briefly review
Anderson’s arguments regarding why RIF results are problematic
for blocking and associative unlearning theories of forgetting.

Finally, in the Finding RIF in the Brain section, we discuss
possible neural mechanisms for RIF.

After providing an overview of existing findings and theories,
we present our account of RIF. In the Competitor Punishment
Through Oscillating Inhibition section, we describe a neural net-
work learning algorithm (previously developed by Norman, New-
man, Detre, & Polyn, 2006) that leverages regular oscillations in
neural feedback inhibition to strengthen weak target memories and
to weaken other (nontarget) memories. The Norman, Newman,
Detre, and Polyn (2006) article focused on the functional proper-
ties of the oscillating algorithm (how many patterns it can store,
etc.). The present article focuses on the psychological implications
of the oscillating algorithm.

In the Model Architecture section, we discuss how the model is
comprised of a cortical semantic memory network and a hip-
pocampal episodic memory network, and we provide a detailed
account of the structure and functioning of these networks. Cru-
cially, the oscillating algorithm is applied to both networks, mak-
ing it possible for us to simulate RIF effects in both semantic and
episodic memory. Next, in the RIF Simulation Methods section,
we describe how we constructed patterns to use in our simulations
and how we simulated each of the three phases of the typical RIF
experiment (study, practice, and test).

In the Simulations of Retrieval-Induced Forgetting section, we
show that the oscillating algorithm can account for detailed pat-
terns of RIF data. This section starts with the Précis of Simula-
tions; readers who are interested in a quick overview of our
simulation results should skip ahead to the précis. In Simulation 1,
we show that the model can account for the basic RIF findings
mentioned above (more RIF in high-competition vs. low-
competition situations, RIF using independent cues). We also
show (in subsequent simulations) that the model provides a clear
account of the boundary conditions on these basic RIF findings. As
such, the model can account for findings that are inconsistent with
competition dependence and cue independence, as well as findings
that are consistent with these principles. Throughout the Simula-
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tion of Retrieval-Induced Forgetting section, simulations address-
ing existing findings are intermixed with simulations that generate
novel, testable predictions about how different factors modulate
the size of RIF effects.

In the General Discussion, we describe how our theory of RIF
relates to other theories of forgetting. We also provide a summary
list of predictions, describe key challenges for the theory, and
discuss how the model can be applied to other domains (besides
RIF).

RIF Basics

In this section, we describe the basic RIF paradigm and provide
a brief overview of evidence for RIF (for a more thorough over-
view, see M. C. Anderson, 2003). In one commonly used variant
of the RIF paradigm (see, e.g., M. C. Anderson, Bjork, & Bjork,
1994), participants study a list of category–exemplar pairs (e.g.,
Fruit–Apple and Fruit–Pear). Immediately after viewing the pairs,
participants are given a practice phase where they practice retriev-
ing a subset of the items on the list (e.g., they are given Fruit–Pe
and must say Pear). After a delay (e.g., 20 minutes), participants’
memory for all of the pairs on the original study list is tested. The
paradigm is illustrated in Figure 1.

There are several notable results:

● Memory for practiced stimulus pairs (e.g., Fruit–Pear) is
better than memory for control pairs that were not practiced
and have no resemblance to practiced stimulus pairs (e.g.,
Animal–Sheep).

● Memory for nonpracticed pairs that are related to practiced
pairs (e.g., Fruit–Apple) is worse than memory for control
pairs.

● As initially demonstrated by M. C. Anderson and Spellman
(1995), forgetting of Apple is not limited to situations where
Fruit is used as a retrieval cue. Forgetting also occurs when
memory is tested with other cues that are related to Apple but
not to practiced stimulus pairs like Fruit–Pear. For example,
forgetting is observed when Red is used to cue for Apple.
Anderson calls this property cue-independent forgetting, al-
though (as discussed in Simulation 5) some types of test cues
are more effective at eliciting RIF than others.

Cue-independent forgetting has been observed when category-
plus-one-letter-stem cues (like those depicted in Figure 1) are used
at test (M. C. Anderson, Green, & McCulloch, 2000) and also
when category cues alone are used at test (M. C. Anderson &

Spellman, 1995; Camp, Pecher, & Schmidt, 2005; Starns & Hicks,
2004). Forgetting has been observed when the independent cue is
a related extralist word (e.g., study Fruit–Pear, Fruit–Apple; prac-
tice Fruit–Pe; cue with “Tell me a studied word that is related to
Red and starts with A”; M. C. Anderson, Green, & McCulloch,
2000; see also Carter, 2004). Forgetting has also been observed
when the independent cue is a related word that was paired with
the competitor at study but not presented at practice (e.g., study
Fruit–Pear, Red–Apple; practice Fruit–Pe; cue with Red–A; M. C.
Anderson & Spellman, 1995; Camp et al., 2005; Carter, 2004;
Shivde & Anderson, 2001).

The RIF paradigm described above draws on both semantic and
episodic memory (insofar as it uses preexperimentally familiar
category–exemplar pairs as stimuli). RIF has also been observed in
paradigms that are more purely episodic. For example, M. C.
Anderson and Bell (2001) observed cue-independent RIF for novel
episodic associations between words; this finding is addressed in
Simulation 4. Also, Ciranni and Shimamura (1999) observed RIF
for novel episodic associations between colors, shapes, and loca-
tions. More recently, RIF has also been demonstrated on tests of
semantic retrieval. For example, Carter (2004) demonstrated cue-
independent forgetting of nonstudied semantic associates in an
associate-generation paradigm. Specifically, Carter found that
practicing retrieval of Clinic–Sick reduced the likelihood that
participants would subsequently generate other, nonstudied asso-
ciates of Clinic (e.g., Doctor), even in response to independent
cues like Lawyer; this finding is addressed in Simulation 6. For
another example of RIF in semantic memory, see Johnson and
Anderson (2004). Importantly, the above examples are meant to
provide a general sense of the kinds of studies that have found RIF;
they are not meant to provide an exhaustive list (for other recent
examples of cue-independent forgetting, see, e.g., Levy, McVeigh,
Marful, & Anderson, 2007; Saunders & MacLeod, 2006; Shivde &
Anderson, 2001; Veling & van Knippenberg, 2004).

In light of the aforementioned successes, it is also worth noting
a recent published failure to show RIF using independent cues:
Instead of using an independent cue that was semantically related
to the competitor itself (e.g., cuing for Apple using Red), Perfect
et al. (2004) paired the competitor with a semantically unrelated
word (e.g., Zinc–Apple) prior to the RIF experiment and used this
external associate to cue memory. No RIF was observed in this
condition. We discuss possible explanations for this null RIF effect
in Simulation 5.

Evidence for Competition-Dependent Forgetting

As stated earlier, another one of Anderson’s key claims is that
RIF effects are competition dependent: Forgetting should be ob-
served for strong competitors but not for weak competitors (M. C.
Anderson, 2003; M. C. Anderson et al., 1994). More concretely,
we can define a strong competitor as an item that receives a high
level of excitatory input (given a particular cue) but not enough to
actually win the competition. According to this framework, prac-
ticing retrieval of Pear (using the cue Fruit–Pe) causes forgetting
of Apple because Apple receives a high level of excitatory input,
but not enough to cause it to win over Pear.

The most important prediction of the competition-based account
is that reducing the extent to which Apple competes with Pear (i.e.,
reducing the amount of excitatory input that Apple receives rela-

Fruit - Pear

Fruit - Apple

Animal - Cow

Animal - Sheep

Fruit - Pe___

Fruit - P____

Fruit - A____

Animal - C____

Animal - S____

Study Practice Test

Figure 1. Flowchart diagram for Anderson’s retrieval-induced forgetting
paradigm.
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tive to Pear) should reduce forgetting of Apple. Anderson tested
this by changing the practice phase such that, instead of giving
participants partial-practice cues and asking them to complete the
cues, participants were given additional presentations of previ-
ously studied pairs (Fruit–Pear). We refer to this latter condition as
the extra-study condition. The intuition here is that the relative
match between the cue and Pear (vs. Apple) is larger in the
extra-study condition than in the partial-practice condition, so
there should be less competition between Apple and Pear in the
extra-study condition. According to the competition-based view of
RIF, this implies that recall of Apple should be hurt less in the
extra-study condition (vs. the partial-practice condition). This was
confirmed by M. C. Anderson and Shivde (2003), who found
forgetting of competitors (measured using an independent cue)
after partial practice but not after extra study (see M. C. Anderson,
Bjork, & Bjork, 2000; Bäuml, 1996, 2002; Blaxton & Neely, 1983;
Ciranni & Shimamura, 1999; Shivde & Anderson, 2001, for re-
lated findings). We address the retrieval dependence of RIF in
Simulation 1.

Another way that Anderson has tested the competition-based
account is by manipulating the taxonomic strength of the compet-
ing category–exemplar pairs. For example, participants might
study Fruit–Apple, Fruit–Kiwi, and Fruit–Pear, then practice
Fruit–Pe. In this example, strong associates of Fruit (Apple) should
compete more strongly during retrieval than weak associates of
Fruit (Kiwi), so strong associates should show more RIF than weak
associates. This prediction was confirmed by M. C. Anderson et al.
(1994) and also by Bäuml (1998). Both of these studies found RIF
for strong associates but no RIF at all for weak associates (but see
Williams & Zacks, 2001, for a failure to replicate the result). We
address the effects of competitor strength on RIF in Simulation 2.

RIF as Competitor Weakening

To account for the above findings, Anderson has argued that
RIF involves direct weakening of competing memory representa-
tions—that is, Apple is harder to retrieve in the paradigms de-
scribed above (even with independent cues) because the Apple
representation itself has been weakened (M. C. Anderson, 2003).
Anderson has been careful to distinguish this account from other
theories of RIF, most prominently:

● Blocking theories, which posit that impaired recall of Apple
is an indirect consequence of strengthening Pear and that no
actual weakening of Apple takes place (e.g., McGeoch,
1936)—according to these theories, strengthening Pear at
practice hurts subsequent recall of Apple by increasing the
odds that Pear will come to mind and block recall of Apple;
and

● Associative unlearning theories, which posit that learning at
practice involves weakening of the connection between Fruit
and Apple (and strengthening of the connection between Fruit
and Pear) but that the Apple and Pear representations them-
selves are unaffected (e.g., Melton & Irwin, 1940).

See M. C. Anderson (2003) and M. C. Anderson and Bjork
(1994) for a much more detailed overview of these theories and
other theories of RIF. While blocking and associative unlearning

theories can account for certain aspects of the RIF data space (e.g.,
the basic finding that practicing Fruit–Pe hurts participants’ ability
to subsequently recall Apple using the cue Fruit–A), other aspects
of the RIF data space are more problematic for blocking and
associative unlearning theories.

With regard to blocking theories, the key claim of these theories
is that forgetting of the competitor (Apple) is a consequence of
strengthening of the practiced item (Pear). As such, a given ma-
nipulation should boost RIF if and only if that manipulation also
boosts target strengthening. Several findings from the RIF litera-
ture contradict this prediction. For example, Ciranni and Shi-
mamura (1999) found a difference in competitor forgetting for
partial practice versus extra study (RIF was obtained in the former
condition but not the latter) but no difference in target strength-
ening for partial practice versus extra study (for similar results,
see, e.g., M. C. Anderson, Bjork, & Bjork, 2000; M. C. Anderson
& Shivde, 2003).

With regard to associative unlearning theories, the main predic-
tion of these theories (illustrated in Figure 2) is that forgetting of
Apple should be limited to the cue Fruit. Other cues like Red–A
should be able to bypass the weakened Fruit–Apple association
(and the strengthened Fruit–Pear association) and access the intact
Apple memory. However, this prediction contradicts the finding
(discussed earlier) that forgetting generalizes to cues other than
Fruit (e.g., M. C. Anderson & Spellman, 1995).

In summary, the idea that RIF involves direct weakening of
competitors appears to provide a better account of extant RIF data
than the blocking and associative unlearning theories described
above. However, as discussed later, we think that a more sophis-
ticated version of associative unlearning (that operates on micro-
features of distributed representations, as opposed to word-level
concepts) plays an important role in RIF, and we think that
blocking can also contribute to RIF in certain circumstances. We
revisit the issue of how our theory relates to competitor weakening,
blocking, and associative unlearning in the General Discussion.

Finding RIF in the Brain

The results reviewed above suggest that brain mechanisms
responsible for RIF need to be able to weaken memories according
to the degree that they compete. Recently, Levy and Anderson
(2002) and M. C. Anderson (2003) focused on the possible role of

Pear

Apple

Fruit

Red

Pear

Apple

Fruit

Red

Before Practice After Practice

Figure 2. Illustration of associative unlearning theory: Practice of
Fruit–Pe strengthens the Fruit–Pear connection and weakens the Fruit–
Apple connection (for more discussion of this theory, see M. C. Anderson
& Bjork, 1994). This theory predicts that forgetting of Apple should be
observed only when using the cue Fruit (but not with other cues like Red).
For evidence that contradicts this prediction, see, for example, M. C.
Anderson and Spellman (1995).
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prefrontal cortex (PFC) in mediating competitor punishment.
There is a large body of research (see, e.g., Miller & Cohen, 2001)
suggesting that PFC plays a role in guiding the online dynamics of
competition by providing extra activation to the contextually ap-
propriate response (thereby ensuring that the correct response wins
and other responses lose the competition). However, this biased
competition idea does not address the most salient aspect of RIF,
namely, that losing the competition to be retrieved has lasting
effects on the accessibility of the losing memory. Although there
is some debate over exactly how long RIF effects last (e.g.,
MacLeod & Macrae, 2001), there is widespread agreement that
RIF can last for at least 20 minutes (M. C. Anderson, 2003; we
address the time course of RIF in more detail in the General
Discussion). To explain why losing the competition has lasting
effects, our theory provides an account of how local learning
mechanisms, operating within the networks where semantic and
episodic memories are stored (cortex and hippocampus, respec-
tively), can weaken competing memories. This approach is de-
scribed in detail below.

Competitor Punishment Through Oscillating Inhibition

In this section, we present the core of our theory of RIF: a neural
network learning algorithm that specifies how local synaptic mod-
ification mechanisms can implement selective weakening of strong
competitors and selective strengthening of weak parts of the to-
be-learned (target) memory. In previous work, Norman, Newman,
Detre, and Polyn (2006) mapped out the algorithm’s capacity for
storing patterns and showed that the algorithm’s ability to punish
competitors greatly improves its ability to memorize and recall
overlapping input patterns (relative to similar algorithms that do
not incorporate competitor punishment; this point is discussed in
more detail in the General Discussion). While the development of
the algorithm was inspired by behavioral data indicating compet-
itor punishment, Norman, Newman, Detre, and Polyn did not
address the algorithm’s ability to account for these behavioral data.
The goal of the present article is to evaluate how well this algo-
rithm works as a psychological theory by exploring its ability to
account for detailed patterns of RIF data.

The learning algorithm depends critically on oscillations in the
strength of neural feedback inhibition. By way of background, we
describe the role of inhibition in regulating excitatory activity in
the model. Then, we provide an overview of how the learning
algorithm leverages changes in the strength of inhibition to flush
out strong competitors (so they can be punished) and to identify
weak parts of target memories (so they can be strengthened).
Finally, we provide a more detailed account of how synaptic
weights are updated in the model, and we briefly discuss how the
algorithm may be implemented in the brain by theta oscillations.

The Role of Inhibition in Recurrently Connected Networks

The network used in our simulations, like the brain itself, has
recurrent connectivity: If Unit X projects to Unit Y, there is a path
back from Unit Y to Unit X (although not necessarily a direct path;
see, e.g., Douglas, Koch, Mahowald, Martin, & Suarez, 1995;
Felleman & Van Essen, 1991). Recurrently connected networks
like this one need some way of controlling excitatory activity so
activity does not spread across the entire network (causing a

seizure). In the brain, this problem is solved by inhibitory inter-
neurons. These interneurons enforce a set point on the amount of
excitatory activity within a localized region by sampling the
amount of excitatory activity in that region and sending back a
commensurate amount of inhibition (Douglas et al., 1995; Douglas
& Martin, 1998; O’Reilly & Munakata, 2000; Szentágothai, 1978).
In our model, we capture this set-point dynamic using a k-winners-
take-all (kWTA) inhibition rule, which adjusts inhibition such that
the k units in each layer that receive the most excitatory input are
active and all other units are inactive (Minai & Levy, 1994;
O’Reilly & Munakata, 2000).1

Figure 3 provides a schematic illustration of the kWTA algo-
rithm. First, the algorithm ranks all of the units in the layer
according to the amount of excitatory input they are receiving.
Next, the kWTA algorithm sets inhibition such that the inhibitory
threshold (the point at which inhibition exactly balances out exci-
tation) is located between the level of excitation received by the
kth unit and the level of excitation received by the k � 1st unit.
This ensures that the top k units are above threshold and all of the
other units are below threshold.

In the simulations below, we set k equal to the number of active
units per layer in each studied pattern, such that (when kWTA is
applied to the network) the best fitting memory—and only that
memory—is active. For a more detailed mathematical description
of kWTA, see Appendix A.

Summary of the Learning Algorithm

The goal of the oscillating learning algorithm is to adjust syn-
aptic weights to optimize retrieval of the target memory on sub-
sequent trials. Because memory retrieval is a competitive process,
the algorithm seeks to optimize target retrieval both by strength-
ening the target memory and by weakening competing memories.
Another key learning principle is that synaptic modification should
be as frugal as possible: While there is a clear overall benefit to
weakening competing memories, excessive weakening can have
harmful consequences if it ever becomes necessary to recall those
competitors later. Thus, memory weakening should be applied
only to nontarget memories that are threatening to displace the
target memory. Likewise, there is no benefit to strengthening a
memory trace if that trace is already strong enough to support
robust recall. Thus, strengthening should be limited to weak parts
of the target memory (the parts that are most likely to be displaced
by competitors). For additional discussion of how frugal synaptic
modification benefits recall performance in neural networks, see
Senn and Fusi (2005).

To selectively strengthen weak target units, the algorithm needs
a way of identifying which parts of the target memory trace are
weak. Likewise, to selectively punish strong competitors, the al-
gorithm needs a way of identifying which memories are strong
competitors. The learning algorithm achieves these goals by os-
cillating inhibition above and below its baseline level and by

1 There are circumstances under which kWTA inhibition (as imple-
mented in our model) can lead to slightly more or slightly fewer than k
units being active; for a thorough treatment of this issue, see O’Reilly and
Munakata (2000). These small deviations are not important for explaining
how kWTA shapes our model’s behavior, so we gloss over them when
discussing kWTA in the main text.
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learning based on the resulting changes in activation. The major
components of the algorithm are summarized here and depicted
graphically in Figure 4.

● First, the target pattern is presented to the network, by
applying an external input to each of the units that are active
in the target pattern (this input is held constant throughout the
entire trial). Given strong external input, the total amount of
excitatory input will be larger for target units than nontarget
units. In this situation, the kWTA rule will set inhibition such
that the target units are active and other (nontarget) units are
inactive.

● Second, the algorithm identifies weak parts of target mem-
ories by raising inhibition above the baseline level of inhibi-
tion (set by kWTA). This acts as a stress test on the target
memory. If a target unit is receiving relatively little support
from other target units, such that its net input is just above
threshold, raising inhibition will trigger a decrease in the
activation of that unit. However, if a target unit is receiving
strong support from other target units, such that its net input
is far above threshold, it will be relatively unaffected by this
manipulation.

● Third, the algorithm strengthens units that turn off when
inhibition is raised (i.e., weak target units), by increasing
weights that connect these units to other active units. By
doing this, the learning algorithm ensures that a target unit
that drops out on a given trial will receive more input the next
time that cue is presented. If the same pattern is presented
repeatedly, eventually the input to that unit will increase to
the point where it no longer drops out in the high-inhibition
condition. At this point, the unit should be well connected to
the rest of the target representation (making it possible for the
network to activate that unit, given a partial cue), and no
further strengthening will occur.

● Fourth, the algorithm identifies competitors by lowering
inhibition below the baseline level of inhibition. Effectively,

lowering inhibition reduces the threshold amount of excita-
tion needed for a unit to become active. If a nontarget unit is
just below threshold (i.e., it is receiving strong input but not
quite enough to become active), lowering inhibition will
cause that unit to become active. If a nontarget unit is far
below threshold (i.e., it is not receiving strong input), it will
be relatively unaffected by this manipulation.

● Fifth, the algorithm weakens units that turn on when inhi-
bition is lowered (i.e., strong competitors), by reducing
weights that connect these units to other active units. By
doing this, the learning algorithm ensures that a unit that
competes on one trial will receive less input the next time that
cue is presented. If the same cue is presented repeatedly,
eventually the input to that unit will diminish to the point
where it no longer activates in the low-inhibition condition.
At this point, the unit is no longer a competitor, so no further
punishment occurs.

Algorithm Details

The Norman, Newman, Detre, and Polyn (2006) learning algo-
rithm adjusts connection strengths using the contrastive Hebbian
learning (CHL) equation (Ackley, Hinton, & Sejnowski, 1985;
Hinton, 1989; Hinton & Sejnowski, 1986; Movellan, 1990). CHL
involves contrasting a more desirable state of network activity
(sometimes called the plus state) with a less desirable state of
network activity (sometimes called the minus state). The CHL
equation adjusts network weights to strengthen the more desirable
state of network activity (so it is more likely to occur in the future)
and weaken the less desirable state of network activity (so it is less
likely to occur in the future).

dWij � ε�Xi
�Yj

� � Xi
�Yj

��. (1)

In the above equation, Xi is the activation of the presynaptic
(sending) unit, and Yj is the activation of the postsynaptic (receiv-
ing) unit. The � and � superscripts refer to plus-state and minus-
state activity, respectively. dWij is the change in weight between

Net Input (Excitation)

HighestLowest

5678 4 3 2 1

Active units
excitation > inhibition

Inactive units
inhibition > excitation

Inhibitory Threshold

Figure 3. Illustration of key features of the k-winners-take-all inhibitory algorithm. The goal of the algorithm
is to set inhibition such that the k units receiving the most excitatory input are active (for this example, assume
that k � 4). To accomplish this goal, the algorithm ranks the units in a layer according to the amount of excitation
that they are receiving. Next, the algorithm sets the level of inhibition such that the inhibitory threshold (the point
at which inhibition exactly balances out excitation) is located between the level of excitation received by the kth
unit and the level of excitation received by the k � 1st unit. This results in a situation where the top k units (and
only those units) are above threshold.
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the sending and receiving units, and ε is the learning rate param-
eter.

The description of the oscillating algorithm in Figure 4 shows
inhibition changing in discrete jumps (between normal, high, and
low inhibition). In the actual model, we implement the learning
dynamics shown in Figure 4 by varying inhibition in a continuous,
sinusoidal fashion over the course of multiple time steps. At the
outset of each trial, we set inhibition to its normal level (i.e., the
level set by kWTA) such that—assuming that the target units
receive sufficient external input—all of the target units (and only
those units) are active. This is the maximally correct state of
network activity. Next, we distort the pattern of network activity
by continuously oscillating inhibition from its normal level to
higher than normal, then to lower than normal, then back to
normal. Weight changes are computed by applying the CHL equa-
tion to successive time steps of network activity. At each point in
the inhibitory oscillation, inhibition is either moving toward its
normal level (the maximally correct state) or is moving away from
this state. If inhibition is moving toward its normal level, then the
activity pattern at time t � 1 will be more correct than the activity
pattern at time t. In this situation, we use the CHL equation to
adapt weights to make the pattern of activity at time t more like the
pattern at time t � 1. However, if inhibition is moving away from
its normal level, then the activity pattern at time t � 1 will be less

correct than the activity pattern at time t (it will contain either too
much or too little activity relative to the target pattern). In this
situation, we use the CHL equation to adapt weights to make the
pattern of activity at time t � 1 more like the pattern at time t.
These rules are formalized in Equations 2 and 3.

If inhibition is returning to its normal value,

dWij � ε�Xi�t � 1�Yj�t � 1� � Xi�t�Yj�t��. (2)

If inhibition is moving away from its normal value,

dWij � ε�Xi�t�Yj�t� � Xi�t � 1�Yj�t � 1��. (3)

Note that Equation 3 is the same as Equation 2, except for a change
in sign. One useful to way to reexpress these equations is to
combine the sign change and ε into a single learning rate term
(lrate):

dWij � lrate�Xi�t � 1�Yj�t � 1� � Xi�t�Yj�t��, (4)

where lrate takes on a positive value (ε) when inhibition is return-
ing to its normal value and takes on a negative value (�ε) when
inhibition is moving away from its normal value.

Figure 5 summarizes how the learning algorithm affects target
and competitor representations. The algorithm strengthens the
connections between target units that drop out (during the high-

Active units
excitation > inhibition

Inactive units
inhibition > excitation

Present the target
pattern to the network

Identify weak target units
by raising inhibition

Strengthen units that turn off
(= weak target units)

Identify competitors
by lowering inhibition

Weaken units that turn on
(= strong competitors)

1)

2)

3)

4)

5)

TT T T

TT T T

TT T T

TT T T

TT T T

TT T T

TT T TT

C C C C

C C C C

C C C C

C C C C

C C C C

C C C C

C C C CC

Net Input (Excitation)

Figure 4. High-level summary of the learning algorithm. For all subparts of the figure, target units (labeled
with a T) and competitor units (labeled with a C) are ordered according to the amount of excitatory net input they
are receiving. Active units (excitation � inhibition) are shown with a white background color, and inactive units
(inhibition � excitation) are shown with a black background color. Step 1 depicts what happens when the target
pattern is presented to the network. Assuming that the external input (applied to the target units) is strong enough,
the total amount of excitatory input will be higher for target units than for competitor units. In this situation, if
k equals the number of target units, the k-winners-take-all rule sets inhibition such that the k target units are
above threshold and competitor units are below threshold. Steps 2 and 3: Raising inhibition causes target units
that are just above threshold to turn off; the learning algorithm then acts to strengthen these units. Steps 4 and
5: Lowering inhibition causes competitor units that are just below threshold to become active; the learning
algorithm then acts to weaken these units.
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inhibition phase) and other target units. Also, it weakens the
connections between competitor units that pop up (during the
low-inhibition phase) and other units that are active during the
low-inhibition phase. The net effect of these weight changes is to
increase the average degree of interconnectivity between the units
in the target pattern and to decrease the average degree of inter-
connectivity between the units in the competitor pattern.2

The increased interconnectivity of the target pattern makes it a
stronger attractor in the network: Because target units all send
mutual support to one another, it is easier to activate the target

pattern (i.e., it is a more attractive state of network activity)
regardless of the cue. Likewise, the decreased interconnectivity of

2 Target strengthening and competitor weakening are contingent on the
assumption that target units are active given normal inhibition (and com-
petitor units are not). If target units do not fully activate given normal
inhibition, this will reduce target strengthening (see Simulations 1.1 and 8).
Likewise, if competitor units start to activate before inhibition is lowered,
this will reduce competitor weakening (see Simulations 2.1 and 2.2).
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Figure 5. How the oscillating learning algorithm changes network weights (Norman, Newman, Detre, & Polyn,
2006). Part A shows how target and competitor activation change during different phases of the oscillation. The
target and competitor patterns are represented as interconnected sets of units (active units are represented by
white circles and inactive units are represented by black circles). The high-inhibition part of the oscillation
causes some target units to drop out and then reappear; the low-inhibition part of the oscillation causes some
competitor units to activate and then disappear. The boxes in Part A summarize how these activation changes
affect network weights. To a first approximation, weight change in the model (for a particular unit) is a function
of the change in that unit’s activation multiplied by the current learning rate (which is positive if inhibition is
returning to its normal value and negative if inhibition is moving away from its normal value; see Equation 4
in the text). Applying this heuristic to all four quadrants of the oscillation, the net effect of the first two quadrants
is to increase weights coming into target units, and the net effect of the second two quadrants is to reduce weights
coming into competitor units. Part B illustrates more specifically how the activation changes in Part A affect the
target and competitor representations: Target units that dropped out during the high-inhibition phase in Part A
become better linked to other target units, and competitor units that popped up during the low-inhibition phase
in Part A are cut off from the target representation (and from each other).
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the competitor pattern makes it a weaker attractor in the network:
Because competitor units do not send strong support to one an-
other, it is easy for the network to slip out of the competitor
activity pattern and into some other pattern. This should hurt the
network’s ability to subsequently retrieve the competitor pattern.

Theta Oscillations: A Possible Neural Substrate for the
Oscillating Learning Algorithm

As discussed in Norman, Newman, Detre, and Polyn (2006),
several findings suggest that theta oscillations (rhythmic changes
in local field potential at a frequency of approximately 4–8 Hz in
humans) could serve as the neural substrate for the oscillating
algorithm:

● Theta oscillations depend critically on changes in the firing
of inhibitory interneurons (Buzsaki, 2002; Toth, Freund, &
Miles, 1997).

● Theta oscillations have been observed in humans in the two
structures that are most important for semantic and episodic
memory: cortex (e.g., Kahana, Seelig, & Madsen, 2001) and
hippocampus (e.g., Ekstrom et al., 2005).

● Most importantly, theta oscillations have been linked to
learning in both animal and human studies (e.g., Seager,
Johnson, Chabot, Asaka, & Berry, 2002; Sederberg, Kahana,
Howard, Donner, & Madsen, 2003). Several studies have
found that the direction of potentiation (long-term potentia-
tion [LTP] vs. long-term depression [LTD]) depends on the
phase of theta (peak vs. trough; Holscher, Anwyl, & Rowan,
1997; Huerta & Lisman, 1996; Hyman, Wyble, Goyal, Rossi,
& Hasselmo, 2003). This result mirrors the property of our
model whereby the high-inhibition phase of the oscillation is
primarily concerned with strengthening target memories
(LTP) and the low-inhibition phase of the oscillation is pri-
marily concerned with weakening competitors (LTD).

At this point, the linkage to theta is only suggestive. However,
if we take the linkage seriously, it leads to several predictions that
should (in principle) be testable using human electrophysiology.
These predictions are described in the Neurophysiological Predic-
tions section at the end of the article.

Model Architecture

As discussed in the introduction, RIF can occur in both semantic
and episodic memory. To encompass both types of RIF, the model
used in our simulations incorporates both a semantic memory
network and an episodic memory network. In keeping with prior
work (e.g., McClelland, McNaughton, & O’Reilly, 1995) suggest-
ing that cortex is the key structure for semantic memory and
hippocampus is the key structure for episodic memory, we refer to
the semantic network as the cortical network and the episodic
network as the hippocampal network. However, we should em-
phasize that the networks used in this article are highly simplified
relative to the more biologically detailed cortico-hippocampal
model that was used in our previous simulation work (Norman &
O’Reilly, 2003; for similar models, see, e.g., Becker, 2005; Has-
selmo, Bodelon, & Wyble, 2002). Most of these simplifications

were driven by practical necessity: The oscillating learning algo-
rithm is highly computation intensive because it computes weight
changes at each time step (whereas most learning algorithms only
factor in the final settled state of the network when changing
weights). Thus, to keep the model from running too slowly, we
tried to use the smallest and simplest possible network that would
allow us to capture the relevant data. In the simulations described
here, we used the oscillating learning algorithm to update weights
in both the cortical (semantic) network and the hippocampal (ep-
isodic) network. The two systems are described in more detail
below.

Cortical (Semantic Memory) Network

The cortical semantic memory network consists of two layers,
an associate layer and an item layer, consisting of 40 units apiece
(see Figure 6). The semantic memory network is fully connected
both within and across layers, such that each unit in the associate
and item layers projects to (and receives a projection from) every
unit in both layers, including itself. Our primary reason for split-
ting the semantic network into two layers was interpretive conve-
nience: All of the paradigms that we simulate in this article involve
memory for stimulus pairs (e.g., Fruit–Apple), where the first
stimulus is used to cue the second at test. Using a two-layer

ItemContext

Hippo

Associate

Semantic Memory System

Episodic Memory System

Figure 6. Diagram of the network used in our simulations. The associate
and item layers constitute the network’s semantic memory system: Patterns
of activity in these layers directly represent the features of studied stimulus
pairs (such that the first stimulus in the pair is represented in the associate
layer and the second stimulus in the pair is represented in the item layer).
The item and associate layers are fully connected, such that each unit in
either layer is connected to all of the units in both layers. Patterns of
activity in the context layer serve as contextual tags (e.g., during the study
phase, a fixed pattern of activity is imposed on this layer to represent the
study context). Each unit in the hippocampal layer is bidirectionally
connected to all of the units in the context, associate, item, and hippocam-
pal layers (including itself). The role of the hippocampal network is to
rapidly bind together coactive context, associate, and item representations
in a manner that supports pattern completion (retrieval of the entire stored
episode in response to a partial cue). Hippo � hippocampal.
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scheme allows us to use one layer to represent the first stimulus in
the pair (the associate: Fruit) and another layer to represent the
second stimulus in the pair (the to-be-recalled item: Apple).

Associate–item patterns were instantiated in the model by turn-
ing on 4 out of 40 units in each of the associate and item layers and
leaving the other units inactive (so, the four active units in the
associate layer corresponded to Fruit, and the four active units in
the item layer corresponded to Apple). For more information on
these patterns, see the Patterns Used in the Simulation section
below.

Prior to the start of the simulated RIF experiment, we pretrained
a limited set of associate–item pairs into the cortical network using
a simple Hebbian rule. This pretraining process was meant to
capture the effects of preexperimental experience with the stimuli
that would be used in the (simulated) RIF experiment. To imple-
ment pretraining, weights in the cortical network were first initial-
ized to .50. We then ran a script that looped once through all of the
patterns that we wanted to pretrain and strengthened weights
between coactive units in each pattern.3 For more details on how
we implemented pretraining, see Appendix B.

During the simulated experiment, synchronous inhibitory oscil-
lations were imposed on both layers (associate and item). The
oscillating learning algorithm was used to modify weights within
and between layers.

Hippocampal (Episodic Memory) Network

The hippocampal component of the model (see Figure 6, top
layer) is responsible for episodic memory. Specifically, the job of
the hippocampal network is to rapidly memorize patterns of cor-
tical activity in a manner that supports pattern completion (i.e.,
retrieval of the entire pattern in response to a partial cue) after a
single study exposure to the pattern. A key challenge for the
hippocampal network is how to enact this rapid memorization
without suffering from unacceptably high (catastrophic) levels of
interference. In keeping with other hippocampal models, we posit
that the hippocampus accomplishes this goal of rapid learning
without catastrophic interference through its use of relatively non-
overlapping, pattern-separated representations (Becker, 2005;
Marr, 1971; McClelland et al., 1995; Norman & O’Reilly, 2003;
O’Reilly & McClelland, 1994).

In our previous modeling work, we used a relatively complex
hippocampal model that maps closely onto the neurobiology of the
hippocampus (Norman & O’Reilly, 2003). The full hippocampal
model that was used by Norman and O’Reilly (2003) relies on
passing activity through a dentate gyrus layer with a very large
number of units (1,600) and very sparse activity to enact pattern
separation. Including this large dentate gyrus layer in our present
model would make it run far too slowly. Thus, for this article, we
decided to radically simplify the hippocampal network, with the
goal of keeping its essential properties (i.e., its ability to complete
patterns after one study trial and its use of pattern separation to
reduce interference) while at the same time keeping the network as
small as possible.

In this section, we first discuss the connectivity of the hip-
pocampal network, including the role of context. Next, we discuss
how pattern separation is implemented in this network. Finally, we
discuss learning and pattern completion in the model.

Connectivity and Context

The hippocampal network used in our simulations here has 80
units. Each unit in the hippocampal layer is bidirectionally con-
nected to all of the units in the (cortical) associate and item layers.
The hippocampal layer also has full recurrent connectivity, such
that each unit connects to all of the other units, including itself.

To simulate findings showing that context change between
study and test can affect episodic memory (e.g., Smith, 1988), we
also incorporated a separate context layer into the model (see
Figure 6, lower left). This context layer can be viewed as repre-
senting aspects of the experimental situation other than the core
semantic features of the associate and the item.4

The context layer contains 40 units and is bidirectionally con-
nected to the hippocampal layer (such that each hippocampal unit
receives a connection from each context unit and sends a projec-
tion to each context unit). When simulating RIF experiments, we
presented patterns with four active units to the context layer to
represent particular contexts (e.g., we kept a particular set of four
context units active throughout the entire study phase to represent
the fact that all of the study pairs are being presented in the study
context). This static context tag mechanism was the simplest
possible mechanism that we could devise that would allow us to
simulate effects of context change. For reasons of simplicity, we
also decided not to have the context layer oscillate, and we decided
not to directly connect the context layer to the associate and item
layers.5

All connections involving hippocampal units were initialized to
zero. The next two sections describe how hippocampal represen-
tations were pretrained (prior to the start of the simulated experi-
ment) and how hippocampal connections were modified during the
simulated experiment.

3 In previous versions of the model, semantic pretraining was imple-
mented using the oscillating learning algorithm. However, it proved to be
impractical to use the oscillating learning algorithm to pretrain semantic
memory for each simulated participant (it was too slow and too difficult to
precisely set memory strength values). Insofar as the focus of this article is
on simulating what happens during the experiment, we decided to use the
simple Hebbian procedure outlined above (strengthen weights between
coactive units) for pretraining. This Hebbian procedure would not work as
an actual cortical learning rule (e.g., it does not have a means of decre-
menting weights). However, for the simplified patterns that we used in
these simulations, it was a very efficient means of implanting attractors into
the network.

4 In this article, we remain agnostic about the neural instantiation of this
context representation. In the General Discussion, we mention that PFC
may play an especially important role in representing contextual informa-
tion (Cohen & Servan-Schreiber, 1992). For additional discussion of the
neural substrates of temporal context memory, see Norman, Detre, and
Polyn (in press).

5 We do not want to rule out the possibility that incremental associative
learning can occur between semantic features and contextual representa-
tions. We experimented with a version of the model that includes direct
context–associate/item connections, and we decided to leave them out after
finding that they greatly increase model complexity without improving the
model’s ability to explain the findings discussed here.
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Pattern Separation: Pretraining Conjunctive
Representations

A key property of the hippocampus is its ability to assign
distinct representations to different combinations of stimuli (so it
can memorize these combinations rapidly without catastrophic
interference). Since the hippocampal network in this model is too
small to use our standard approach to pattern separation (i.e.,
passing activity through a very large, very sparse dentate gyrus
layer), we enforced pattern separation directly on the model by
pretraining a unique conjunctive representation in the hippocam-
pus for each associate–item combination.6 These conjunctive rep-
resentations were comprised of four active hippocampal units out
of 80 total (e.g., Fruit–Apple would get its own set of four units;
Fruit–Pear would get a different set of four units). For all simula-
tions except Simulation 7, the hippocampal representations corre-
sponding to distinct associate–item pairs were completely non-
overlapping.

To establish the conjunctive representation for a particular
associate–item pair, we strengthened connections from active
associate-layer and item-layer units to the four hippocampal units
in the conjunctive representation. Also, to ensure robust hippocam-
pal attractor dynamics, recurrent connections between these four
units were strengthened. Weight values for strengthened connec-
tions were sampled from a uniform distribution with a mean of .95
and a half-range of .05 (weight values for nonstrengthened con-
nections were kept at zero). These pretrained connections were
kept fixed over the course of the simulation.7 Importantly, while
connections into the hippocampus from the associate and item
layers were pretrained (giving each hippocampal unit a particular
conjunctive “receptive field”), connections out from the hippocam-
pus to the associate, item, and context layers were not pretrained.
When these outbound connections are set to zero (their default
value), activation can go into the hippocampus, but it cannot feed
back into cortex and support recall of cortical representations.

Learning and Pattern Completion in the Hippocampal
Network

During the simulated experiment, learning in the hippocampal
network was focused on two sets of connections:

● Connections from the context layer to the hippocampus
(which serve to bind particular associate–item pairings to the
study context), and

● Connections from the hippocampus back to associate and
item layers (which allow the hippocampus to support pattern
completion of missing pieces of associate–item pairs).

We applied the oscillating algorithm to the hippocampal layer
and allowed it to modify these two sets of connections. Also, in
keeping with the idea that hippocampus learns rapidly (to support
pattern completion after a single study trial) but cortex learns more
incrementally (McClelland et al., 1995; Norman & O’Reilly,
2003), we used a much higher learning rate for hippocampal
connections (2.00) than for cortical connections (0.05).

Pattern completion in the hippocampus works in the following
manner: When a partial version of a studied associate–item pair is
presented, activation spreads upward in the model to the hip-

pocampal layer, activating the hippocampal representation of that
pair. If that hippocampal representation was linked back to the
associate and item layers at study, then activation will flow back
from the hippocampal representation to the associate and item
layers and fill in the missing pieces of the cortical pattern. This
process is modulated by contextual connections: If the hippocam-
pal representation of the relevant associate–item pair was linked to
the study context (during the study phase) and we cue at test with
a representation of the study context, this will result in extra
excitation being sent to the relevant hippocampal representation,
making it more likely to activate.

Hippocampal Model Summary

We set out to devise the simplest possible hippocampal network
that

● Instantiated the key hippocampal properties of pattern com-
pletion and pattern separation, and

● Was compatible with the oscillating learning algorithm (in
the sense that it showed robust attractor dynamics and was not
too large, given the need to update every weight on every time
step).

To accomplish this goal, we used a relatively small, one-layer
hippocampal network, and we pretrained the network such that
each associate–item pair that might come up in the experiment
was given its own conjunctive representation (i.e., a set of
hippocampal units tuned to represent this particular associate–
item pair). Note that the pretraining process does not link these
hippocampal representations to context, and it does not
strengthen the outbound connections that link these hippocam-
pal representations back to the associate and item layers. During
the simulated experiment, the oscillating learning algorithm
binds hippocampal representations to the study context and
links these hippocampal representations back to the associate
and item layers (so they can support pattern completion). Cru-
cially, if a particular hippocampal representation pops up as a
competitor during the practice phase, the oscillating algorithm
can also weaken connections that were strengthened at study,
leading to forgetting of the episodic memory trace.

RIF Simulation Methods

Our basic RIF simulation procedure was structured to match the
three phases of the RIF paradigm: a study phase, where the

6 Given that it was combinatorially infeasible to pretrain a conjunctive
representation for every possible associate–item combination, we focused
on pretraining representations for associate–item pairs that were either
semantically or episodically linked during the experiment. Specifically, we
pretrained a conjunctive representation for every associate–item pair that
was pretrained into semantic memory (via the cortical pretraining process
described above) and/or presented during the study phase.

7 Insofar as the model depends on pretrained connections for pattern
separation, the only way to ensure that pattern separation is maintained
across the simulation is to keep these connections fixed.
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network learns about some patterns; a practice phase, where some
of the studied patterns (but not others) are presented again either in
their entirety or in partial form; and a test phase, which measures
the network’s ability to complete partial versions of studied pat-
terns.

First, we describe how we generated the patterns that were used
in the simulations. Next, we describe aspects of our procedure that
were common to all three phases (study, practice, and test). Fi-
nally, we describe the different phases of the simulation in more
detail.

Patterns Used in the Simulation

The standard RIF paradigm involves studying items from vari-
ous semantic categories, where multiple items are studied per
category. This was instantiated in our model using category pat-
terns (in the associate layer) that were each linked to multiple item
patterns (in the item layer). Each category tag in the associate layer
was distinct from (i.e., had no overlap with) the category tags
corresponding to other categories. Furthermore, the item-layer
patterns corresponding to different studied items had zero overlap
with one another (see Figure 7 for sample patterns).8

These semantic category–item pairs were pretrained into the
network before the start of the simulated RIF experiment via the
weight presetting mechanism described above in the Cortical
(Semantic Memory) Network section: For semantically strong pat-
terns, the weights between active units in the pattern were set to a
high value (e.g., .90); for semantically weaker patterns, the weights
between active units in the pattern were set to a lower value (e.g.,

.65). For specific details of the algorithm that we used to pretrain
cortical weights, see Appendix B.

Neighbor Patterns

In addition to pretraining patterns that actually appear in the
(simulated) experiment, we also wanted to account for the fact that
other patterns exist in semantic memory that are very similar to
items from the experiment but do not actually appear in the
experiment. To accomplish this goal, we took each of the catego-
rized patterns that we pretrained (for use in the experiment), and
we generated another neighbor pattern that had 100% associate-
layer overlap with that pattern (four out of four active units in
common) and 75% item-layer overlap with that pattern (three out
of four active units in common; see Figure 7, second row). Each of
these neighbor patterns was pretrained into the cortical network
prior to the simulated study phase, and each neighbor pattern was
given a unique conjunctive representation in the hippocampus.9

Neighbor patterns were never presented to the network during the
simulated study phase, insofar as they were meant to simulate
nonstudied, similar patterns. Note that the item-layer retrieval cues

8 Our use of zero overlap between item-layer patterns is a simplification; we
explore the effects of higher levels of item-layer overlap in Simulation 7.

9 Neighbor patterns were pretrained in cortex with a semantic strength of
.70 (i.e., connections from shared item units to the unique neighbor item
unit were set to .70, and connections from category units to the unique
neighbor item unit were also set to .70).

Study

Neighbor

Practice

Test

Target Competitor Target Control Competitor Control

Partial Practice Extra Study Reversed Practice

Associate ItemAssociate ItemAssociate ItemAssociate Item

Target Competitor Target Control Competitor Control

Target Competitor Target Control Competitor Control

Figure 7. Figure illustrating a subset of the input patterns used during the study, practice, and test phases of
Simulation 1; these phases are described in the Simulation Phases section of the text. Each input pattern consists
of a pattern of activity across the associate layer and a pattern of activity across the item layer. The top row shows
examples of patterns that were shown at study. Light-colored rectangles indicate active units, and dark-colored
rectangles indicate inactive units. The target and competitor patterns come from one category, and the target
control and competitor control patterns come from another category. Studied patterns from the same category
have 100% overlap in the associate layer but zero overlap in the item layer; studied patterns from different
categories have zero overlap in both layers. The second row shows nonstudied neighbor patterns corresponding
to each of the studied items in the top row (see the Neighbor Patterns section for details). The third row shows
examples of patterns used to probe target memory in the three different practice conditions. The fourth row
shows examples of patterns used to probe memory at test.
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that we used at practice and test (see Figure 7) match both the
to-be-retrieved item and its neighbor equally well. This mirrors the
fact that, in actual RIF experiments, the letter-stem cues used at
test (e.g., the A in Fruit–A) match multiple items stored in seman-
tic memory.

Neighbor patterns contribute to the functioning of the model in
two important ways: First, as described in Simulation 1.1 below,
neighbor patterns (by virtue of their similarity to studied patterns)
exert a strong influence on competitive dynamics at study and
practice, and—through this—they exert a strong influence on the
learning that takes place on study and practice trials. Second, by
ensuring that each item-layer cue has multiple completions, the
neighbor pattern helps to keep recall performance below ceiling at
test (if each item-layer cue fit only one pretrained item-layer
pattern, the network would show good recall of that pattern re-
gardless of how much learning took place at study and practice;
this would be akin to cuing with Fruit–A if there were only one
word in the English language that started with A).10 Neighbor
patterns were included in all of the simulations described in this
article (the only simulation that explicitly discusses their contri-
butions is Simulation 1.1, but they were present in other simula-
tions also).

General Simulation Procedure

This section describes our basic procedure for simulating a
single trial; this procedure was the same for all three phases of the
simulated experiment (study, practice, and test). We provide a
substantially more detailed account of our simulation procedure
(including relevant equations) in Appendix A.

The simulation itself was implemented using a variant of the
O’Reilly and Munakata (2000) Leabra model, which includes the
kWTA inhibition rule described above as well as other useful rules
governing activation propagation. The only differences between
our simulations and standard Leabra were our addition of the
inhibitory oscillation and our use of the learning rule specified in
Equation 4 (instead of the standard Leabra learning rule). For all of
our simulations, the k parameter that governs kWTA was set to k �
4 for each of the layers (to match the fact that associate-layer,
item-layer, and context-layer patterns all comprised four active
units and that hippocampal conjunctive representations also com-
prised four active units).

On each trial, a pattern of activity (e.g., Fruit–Apple) was
presented to the network by providing excitatory input to
associate-layer and item-layer units active in that pattern. This
cue-related input was held constant throughout the trial. The net-
work was given 40 time steps to settle before we started to oscillate
inhibition. Starting at the 40th time step, inhibition was oscillated
by adding a sinusoidally varying inhibition value (at each time
step) to the value of inhibition computed by kWTA. There was one
full oscillation (from normal to high to normal to low to normal
inhibition) per trial.11

During the trial, Equation 4 was used to compute a weight
change value at each time step. Importantly, we “saved up” (ac-
cumulated) these weight change values during the trial and then
applied them to the network at the end of the trial.

Simulation Phases

Before the start of the simulated RIF experiment, we pretrained
cortical weights using the procedure outlined in the Cortical (Se-
mantic Memory) Network section above to implant semantic mem-
ory attractors into the network; see Appendix B for more details.
We also pretrained hippocampal weights using the procedure
outlined in the Hippocampal (Episodic Memory) Network section
above to establish an appropriate set of hippocampal conjunctive
representations.

Phase One: Study Phase

During the study phase, complete patterns (i.e., four out of four
active associate units, four out of four active item units) were
presented to the network. In most experiments, we presented two
categories of patterns at study: the practiced category and the
control category. As discussed above, studied items from the same
category all share a common associate-layer pattern and all have
(completely) unique item-layer patterns. Items from different cat-
egories have zero overlap with one another.

The practiced category can be subdivided into the following
types of patterns:

● Target patterns: These patterns are presented at study and
also during the practice phase. This condition is analogous to
Fruit–Pear in Figure 1.

● Competitor patterns: Competitor patterns are presented at
study but not at practice. This condition is analogous to
Fruit–Apple in Figure 1.

The control category has the same number of items as the
practiced category and is structured identically to the practiced
category (e.g., if the practiced category consists of items with
mean semantic strength values of .95, .85, .85, and .85, the control
category is structured this way also). This way, each item in the
practiced category has a matched item in the control category.
These control items are analogous to Animal–Cow and Animal–
Sheep in Figure 1.

Each study trial involved presenting an associate–item pair from
the study list, along with a study context tag (on the context layer)

10 Note that the two roles played by neighbor patterns in our model—
influencing competitive dynamics by virtue of their similarity to studied
patterns and ensuring that item-layer cues have multiple valid comple-
tions—are logically distinct. In real life, these functions might be sub-
served by different items (e.g., the word Apple has close semantic neigh-
bors, and there are other English words that start with A, but there is no
guarantee that these two sets of items will overlap). In our model, we have
deliberately conflated these two kinds of neighbor relationships (which rely
on semantic and orthographic similarity, respectively) into a single neigh-
bor pattern. In future work, we plan to explore more complex models that
use separate semantic and orthographic representations; this architecture
will allow us to more precisely model the effects of semantic and ortho-
graphic similarity.

11 While the general form of the inhibitory oscillation was the same for
the hippocampal network and the cortical network, the specific parameters
governing the oscillation (e.g., maximum and minimum inhibition values)
were slightly different in hippocampus versus in cortex. For a description
of these differences, see Appendix A.
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that was held constant throughout the entire study phase. The
oscillating algorithm was applied to the network and used to
update cortical and hippocampal weights. In the simulations pre-
sented here, each item in the study list was studied once. Studied
items were presented in a permuted order for each simulated
participant.

Phase Two: Practice Phase

During the practice phase of the simulation, the target item or
items were presented to the network. As with the study phase, the
oscillating algorithm was applied to the network and used to
update cortical and hippocampal weights.

We explored three types of practice in the simulations reported
here:

● Partial practice (also referred to as retrieval practice) in-
volved presenting four out of four of the active associate units
and three out of four of the active item units.

● Extra study used full patterns (just like the study phase):
Four out of four of the active associate units and four out of
four of the active item units were presented to the network.

● Reversed practice involved presenting three out of four of
the active associate (category) units and four out of four of the
active item units (e.g., after studying Fruit–Orange, reversed
practice would use the cue Fr–Orange and ask the model to
recall Fruit). This reversed-practice manipulation was intro-
duced by M. C. Anderson, Bjork, and Bjork (2000) and is
discussed in more detail in Simulation 1.1.

In most of the simulations presented here, the target items were
presented three times at practice (i.e., all of the target items were
presented, then the list was presented again, then the list was
presented again). Our use of three target repetitions matches the
procedure typically used in RIF experiments (e.g., M. C. Anderson
et al., 1994). The order of the target items was permuted with each
pass through the target list.

Typically, the same context tag that we used at study was also
presented to the network during the practice phase (but see Sim-
ulation 5 for an exception to this rule). This allowed us to capture
the fact that participants were actively trying to think back to the
study phase during partial practice. The influence of this context
tag on retrieval was modulated by a context scale parameter that is
described in the Contextual Cue Strength section below.

Phase Three: Test Phase

During the test phase, we cued recall for studied patterns using four
out of four of the active associate units and two out of four of the
active item units. Note that the test-phase partial cue (two out of four
units) was slightly sparser than the practice-phase partial cue (three
out of four units). This mirrors the fact that, in RIF experiments, cues
at test are typically slightly sparser than cues at practice (e.g., partic-
ipants might be given a two-letter word stem at practice and a
one-letter word stem at test; e.g., M. C. Anderson et al., 1994). Using
stronger cues at practice versus test helps to ensure good recall at
practice while also keeping recall at test below ceiling.

The study context tag was presented to the context layer at test
(just as it typically was at practice). With a few exceptions (de-
scribed below), the parameters used at test were the same as the
parameters used in other phases.

Learning at test. One simplification relates to the issue of
learning that occurs during the test phase. Several studies have
demonstrated that RIF effects can be induced by retrieval at test
(see, e.g., Bäuml, 1997, 1998; for further discussion of this issue,
see the section on output interference effects in M. C. Anderson,
2003). However, the fact remains that learning during the test
phase is not necessary to explain the vast majority of the key
findings in the RIF literature.

Thus, we decided to default to having learning turned off at test.
This allowed us to run our simulations much more quickly (since
we did not have to compute weight changes at test, and we did not
have to counterbalance the order in which items appear at test).
Also, by removing an extra source of variance from the model, it
made it easier to draw inferences about how the practice phase
affected stored memories. Finally, removing learning at test gave
us more flexibility in how we could measure performance (e.g., as
discussed below, we could test recall both before and after practice
with learning turned off and look at pretest–posttest difference
scores to index effects of practice). To demonstrate that our model
can account for effects of learning at test, we did run one simula-
tion where learning at test was turned on (see Simulation 1.1).

Computing recall accuracy at test. As noted above, the inhib-
itory oscillation did not start right away on a given trial—the
network was given 40 time steps to settle. We measured recall
accuracy on the 39th time step (right before the onset of the
oscillation).

In RIF experiments, recall is scored as correct versus incorrect
based on whether participants recall the unique properties of the
to-be-recalled item (e.g., the letters in the word Apple). If partic-
ipants retrieve features of the to-be-recalled item that are shared by
multiple category exemplars (e.g., the fact that the to-be-recalled
item is edible) but they fail to retrieve item-specific features, the
trial is marked as incorrect—participants are not granted partial
credit for recall of the shared features. To capture this fact in our
model, we operationalized recall performance (for a given test
item) by computing the activity of the one item-layer unit per
pattern that is active for the to-be-recalled item but not its neighbor
(see Figure 7). We call this measure percent correct recall.12

For simulations that used our canonical two-category structure
(where there was a practiced category and a control category), we
measured the effects of practice-phase learning on targets and
competitors by computing the difference between recall of the item
from the practiced category (e.g., the target or the competitor) and
recall of the corresponding control item. This is the way that
practice effects are typically measured in RIF experiments.

However, for some simulations (in particular, Simulation 2.1), it
was impractical to use a two-category structure. In this case, we
used a scheme where we tested recall performance prior to the

12 Essentially, we wanted to know whether the model was in the correct
attractor state. We focused on recall of unique features because these
features are diagnostic of whether the model retrieved the correct item (as
opposed to its neighbor), whereas shared features are not. We return to this
point in the General Discussion.
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practice phase (with learning turned off), then ran the practice
phase, and then ran the test phase (with learning turned off also).
In this case, we could use the difference in test performance prior
to practice versus after practice to index the effects of the practice
phase on recall (with each item serving as its own control).

Contextual Cue Strength

In running these simulations, we discovered that we needed
some way of capturing the extent to which participants were
actively trying to retrieve memories from a particular context. The
idea that participants can vary the extent to which they cue with
contextual information has extensive precedent in the modeling
literature (e.g., Gillund & Shiffrin, 1984; Shiffrin, Ratcliff, &
Clark, 1990). As a simple illustration of how contextual cuing can
influence behavior, participants are more likely to give a studied
completion to a word-stem cue if they are specifically asked to
provide completions from the study phase versus if they are asked
to give the first completion that comes to mind (e.g., Graf, Squire,
& Mandler, 1984).

In our simulations, we operationalized differences in contextual
cuing by varying a parameter called context scale. This parameter
multiplicatively modifies the strength of the projection between
the context layer and the hippocampal layer (for more information
on how projection-scaling parameters work in the model, see
Appendix A).

During the study phase (and during extra-study practice trials and
reversed-practice trials), we typically set this context scale parameter
to 0.00, reflecting the fact that participants are not actively trying to
retrieve episodic memories during these phases (or, at least, they are
not trying to do this to the same extent that they do at test). Impor-
tantly, setting the context scale parameter to zero interrupts transmis-
sion of activity from the context layer to the hippocampus, but it does
not affect the network’s ability to learn associations between context
and hippocampal representations.13

For partial practice and the test phase, we typically set context
scale to 1.00, reflecting the fact that participants were more likely
to try to actively target the study context during these phases. In
Simulation 4, we also discuss the possibility that participants might
use a higher context scale value on tests that rely purely on
episodic memory, compared with tests where both semantic and
episodic memory contribute.

Variability in Oscillation Amplitude

In our model, successful encoding depends critically on changes
in activation driven by the inhibitory oscillation. To account for the
fact that encoding is not always successful, the model incorporates
the assumption that stimuli do not always trigger a strong inhibi-
tory oscillation. In the simulations presented below, we used a
simple oscillatory variability scheme where (on each trial) there
was a 50% chance that the stimulus would elicit a full-sized
oscillation. Otherwise, the stimulus elicited a half-sized inhibitory
oscillation (i.e., the amplitude of the oscillation was multiplied by
0.5). Half-sized oscillations trigger smaller activation changes (on
average) in hippocampus and cortex and thus trigger less learning.
In particular, half-sized oscillations are not sufficient to support
formation of new hippocampal traces at study (see Simulation 1.1
for an illustration of this point).

The idea that oscillatory amplitude varies from study trial to
study trial and that variations in oscillatory amplitude affect sub-
sequent memory receives strong support from the empirical liter-
ature. In particular, several studies of theta oscillations in humans
have found that theta-band oscillatory power varies from trial to
trial and—crucially—that the strength of theta at encoding (for a
particular stimulus) predicts subsequent retrieval success for that
stimulus (Klimesch, 1999; Klimesch, Doppelmayr, Russegger, &
Pachinger, 1996; Osipova et al., 2006; Sederberg et al., 2003).

Simulations of Retrieval-Induced Forgetting

Précis of Simulations

This section briefly summarizes key findings from our RIF simu-
lations. Some simulations focus on explaining specific findings from
the RIF literature, whereas other simulations (in particular, Simula-
tions 2.2, 2.3, 7, and 8) explore effects of changing model parameters
without trying to simulate any particular published study. Differences
between the simulations are summarized in Table 1.

● In Simulation 1.1, we address the retrieval-dependence of
RIF. Specifically, we simulate the finding that forgetting of
competitors occurs after partial practice but not after extra
study or reversed practice (e.g., M. C. Anderson, Bjork, &
Bjork, 2000). This result occurs because the degree of com-
petition between the target and the competitor is higher given
partial (i.e., incompletely specified) retrieval cues versus
when the full target item is presented. We also simulate the
finding of test order effects in RIF studies: Recall is worse for
category exemplars that are tested later in the test phase
versus earlier in the test phase (e.g., Bäuml, 1998). This
occurs because items tested later act as competitors during
recall of items tested earlier. Finally, we simulate the finding
that, even though retrieval practice hurts competitor recall
more than extra study or reversed practice, these practice
conditions have equivalent (beneficial) effects on target recall
(e.g., M. C. Anderson, Bjork, & Bjork, 2000). We explain this
finding of equivalent strengthening in terms of two opposing
factors that cancel each other out: Increased competition
during partial practice (vs. the other conditions) boosts target
strengthening, but target misrecall during partial practice re-
duces target strengthening (see also Simulation 8).

● In Simulation 1.2, we simulate the finding that RIF can be
observed when memory is probed with independent cues (i.e.,
cues that did not appear at practice and are unrelated to
practiced target items; see, e.g., M. C. Anderson & Shivde,
2003; M. C. Anderson & Spellman, 1995). Forgetting occurs
for independent cues because of a combination of two factors:
First, if the independent cue is paired with the competitor at

13 As discussed in Simulation 7, the model’s ability to fit extant RIF data
depends on our use of a relatively low context scale value at study;
however, context scale does not have to be set all the way to zero. In the
simulations that we have run, the predictions of the model given low
positive values of context scale at study (0.00 � context scale � 0.50) are
qualitatively identical to the predictions of the model given a context scale
value of 0.00 at study.
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study (e.g., Red–Apple), the episodic trace of that event
sometimes pops up during the low-inhibition phase at practice,
thereby weakening the trace and harming subsequent recall.
Second, pop-up of the cortical (semantic) trace of the competitor
triggers incremental weakening of the competitor’s cortical rep-
resentation. This incremental weakening of the Apple attractor in
cortex leads to subtle but measurable RIF effects in response to
independent cues (see also Simulation 6).

● In Simulation 2.1, we explore how the semantic strength of
competitors and targets affects RIF. We replicate the pattern of
results obtained by M. C. Anderson et al. (1994), whereby RIF
occurs for semantically strong competitors but not semantically
weak competitors and RIF is not affected by target strength. RIF
is observed for strong but not weak competitors because strong
competitors pop up in semantic memory during the low-
inhibition phase but weak competitors do not. Crucially, for the
parameters used in this simulation, semantic pop-up is a prereq-
uisite for episodic pop-up (so weak competitors do not pop up in
episodic memory either). Because of this complete lack of pop-

up, the memory traces of weak competitors are not harmed at
practice, and no RIF occurs for these items.

● In Simulation 2.2, we parametrically manipulate target
strength and show that target strength actually has a nonmono-
tonic effect on RIF: Increasing target strength initially boosts
RIF, but further increases in target strength reduce RIF. This
nonmonotonic pattern is observed because of two contrasting
effects of target strength on competitor activation at practice.
When targets are weak, competitors activate strongly, but this
activation spills over into the high-inhibition (target strengthen-
ing) phase; this spillover reduces RIF. The initial effect of
increasing target strength is to eliminate this spillover, thereby
boosting RIF. Further increases in target strength reduce RIF by
reducing the overall amount of competitor activation.

● In Simulation 2.3, we present simulations showing effects
of relative competitor strength: Increasing the strength of one
competitor, relative to a second competitor, reduces RIF for
the second competitor. This occurs because the baseline level

Table 1
Overview of the Simulations

Simulation Simulation of Study phase Practice type Test cue type Key features

Defaults Semantically defined
categories; study
both targets and
competitors

Partial practice Dependent cue (semantic
associate � item
stem)

1.1 Various Default Partial practice, extra
study, reversed
practice

Default Manipulates practice type

1.2 Various Default Partial practice, extra
study, reversed
practice

Independent cue
(semantic associate �
item stem)

Manipulates practice type with
independent cues

2.1 M. C. Anderson,
Bjork, &
Bjork (1994)

Default Default Default Manipulates both target and
competitor semantic strength

2.2 Exploratory Default Default Default Manipulates target semantic strength
2.3 Exploratory Default Default Default Manipulates relative semantic strength

of competitors
3 Bäuml (2002) Study competitors but

not targets
Semantic generation

of previously
nonstudied targets,
study of
previously
nonstudied targets

Default Compares the effects of semantically
generating vs. studying new items
at practice

4 M. C. Anderson
& Bell (2001)

Episodically defined
categories

Default Independent cue
(episodic associate �
item stem)

Practiced vs. control item sets defined
by episodic associations;
independent episodic cues

5 Perfect et al.
(2004)

Default, plus additional
study phase where
competitors are
paired with novel
associates

Default Default; also,
independent cue
(episodic associate
from another context)

Compares standard test cues with
external cues (episodic associations
from another context)

6 Carter (2004) Study targets but not
competitors

Default Semantic generation with
independent cue
(semantic associate)

Tests how retrieval practice affects
subsequent semantic retrieval of a
nonstudied competitor

7 Exploratory Vary pattern overlap
within category

Extra study Default Measures forgetting in the extra-study
condition as a function of pattern
overlap

8 Exploratory Default Partial practice (1, 2,
or 3 units), extra
study

Default Tests how target semantic strength
and practice cue partiality interact
with target strengthening
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of inhibition in the model is an (increasing) function of both
the level of excitation of the target and the level of excitation
of the strongest competitor. As such, increasing the strength
of the strongest competitor triggers an increase in baseline
inhibition, which makes it less likely that other, weaker
competitors will activate at practice.

● In Simulation 3, we simulate the Bäuml (2002) finding that
semantic generation of nonstudied category exemplars leads
to forgetting of previously studied exemplars from those
categories. This occurs for the same reason that we saw RIF
in Simulations 1 and 2: During the semantic generation phase,
strong semantic competitors pop up in cortex during the
low-inhibition phase. This, in turn, triggers pop-up (and
weakening) of the episodic representations of these compet-
itors that were formed at study.

● In Simulation 4, we simulate the finding from M. C. Ander-
son and Bell (2001) that independent-cue RIF can be ob-
served when the practiced and control groups are defined in
terms of novel episodic associations (as opposed to preexist-
ing semantic associations). A key finding from this simulation
is that different parameter settings are required to simulate the
null RIF effect for weak semantic associates observed by
M. C. Anderson et al. (1994) and the presence of an RIF
effect for novel episodic associates. To simulate the Anderson
et al. result, we need to ensure that episodic links are not
sufficient to trigger pop-up during the low-inhibition phase at
practice (otherwise weak, studied competitors will pop up at
practice, leading to RIF for these items). To simulate the
Anderson and Bell episodic RIF result, we need to ensure that
episodic links between the retrieval cue and the competitor
are sufficient to trigger pop-up at practice. We address this
problem by positing that participants cue more strongly with
context on purely episodic memory tests (vs. tests where
semantic memory also contributes). In the model, we opera-
tionalize this difference by increasing the context scale pa-
rameter. This change sends extra excitation to episodic mem-
ory traces from the study context, thereby making it possible
to observe pop-up of episodic associates of the practice cue
(even if they do not pop up in semantic memory first).

● In Simulation 5, we simulate the finding from Perfect et al.
(2004) that not all independent cues show RIF. Specifically,
RIF is not observed when the competitor is paired with a
semantically unrelated external associate prior to the start of
the RIF experiment and the external associate is used to cue
memory at test. In the model, the lack of RIF is attributable to
contextual focusing during the practice phase: Cuing with the
study context during the practice phase prevents episodic
traces that were formed outside of the study context (e.g., the
external associate) from activating as competitors. Because
the episodic trace of the external associate does not activate
during the low-inhibition phase at practice, it retains its effi-
cacy in supporting retrieval at test.

● Simulation 6 focuses on RIF effects in semantic memory. We
simulate the finding from Carter (2004) that practicing retrieval
of Clinic–Sick impairs memory for nonstudied semantic associ-

ates of Clinic (such as Doctor) when memory for Doctor is tested
using an independent cue (“Generate a semantic associate of
Lawyer”). This effect occurs because Doctor pops up as a
competitor in semantic memory when participants are practicing
retrieval of the Clinic–Sick association, leading to weakening of
the cortical (semantic) representation of Doctor.

● Simulation 7 explores boundary conditions on forgetting
caused by extra study. We manipulate the level of pattern
overlap between same-category items in both the item layer
and in the hippocampal layer. When overlap is low, we
replicate the finding from Simulation 1.1 that extra study does
not cause forgetting. However, when overlap is sufficiently
high, we start to see an effect of extra study on competitor
memory (such that extra study of some category exemplars
causes forgetting of other category exemplars). This occurs
because increasing overlap boosts the level of net input re-
ceived by the hippocampal representations of competitors
relative to the target. Eventually, the level of net input gets
high enough to trigger pop-up of competitors on extra-study
trials, which (in turn) leads to forgetting of these items.

● Simulation 8 explores factors that affect the amount of
target strengthening that occurs at practice. We manipulate
retrieval success at practice by varying the semantic strength
of target items and by varying the structure of the cue at
practice (specifically, by varying the number of active item-
layer units in the retrieval cue). In keeping with the idea that
competition drives learning in the model, we show that opti-
mal strengthening occurs in conditions where the target just
barely wins at practice (i.e., recall accuracy at practice is high,
and competition is also high).

Data Fitting Strategy

The overall goal of this modeling work is to account for key
empirical regularities in the RIF data space and to establish boundary
conditions on these regularities. As such, the modeling work de-
scribed below focuses more on qualitative fits to general properties of
the RIF data space rather than on quantitative fits to results from
specific studies. Unless explicitly noted, model parameters were held
constant across all of the simulations presented here.

All of the simulation results that we report in the text of the
article (showing differences between conditions) are significant at
p � .001. In graphs of simulation results, error bars indicate the
standard error of the mean, computed across simulated partici-
pants. Most simulations used on the order of 1,000 simulated
participants. When error bars are not visible, this is because they
are too small relative to the size of the symbols on the graph (and
thus are covered by the symbols).14

Simulation 1: Retrieval Dependence and Cue
Independence

This simulation addresses fundamental properties of RIF men-
tioned in the introduction. Simulation 1.1 explores retrieval depen-

14 To ensure that the results reported in the article were statistically
reliable, we sometimes ran extra simulated participants to disambiguate the
results of a particular simulation.
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dence: the extent to which forgetting is dependent on participants
having to retrieve the target item at practice (based on partial cues).
Simulation 1.2 explores the extent to which RIF can be observed
using independent cues at test.

Simulation 1.1: Basic RIF and Retrieval Dependence

Background

The goal of this simulation is to explore how the structure of the
cue at practice affects target strengthening and competitor weak-
ening. Some illustrative results from M. C. Anderson, Bjork, and
Bjork (2000) are shown in Figure 8. This study used a variant of
the Fruit–Apple RIF paradigm; at practice, Anderson, Bjork, and
Bjork compared partial practice (Fruit–Pe) with reversed practice
(Fr–Pear). Reversed practice is conceptually similar to giving
participants extra study of Fruit–Pear; in both cases, the item
pattern (Pear) is presented outright at practice, so competition
among item representations should be minimal. Thus, to the extent
that RIF is competition dependent, no RIF should be observed after
reversed practice.

The left-hand panel of Figure 8 shows that both partial practice
and reversed practice improved target recall in this study to a
roughly equal extent; this finding is consistent with other findings
showing equal strengthening for partial practice versus extra study
(e.g., Ciranni & Shimamura, 1999). The right-hand panel of Fig-
ure 8 shows that partial practice affected competitor recall but
reversed practice did not. Below, we explore whether the model
can generate this pattern of results.

Method

The pattern structure used in this simulation is illustrated in
Figure 9. As shown in the figure, two semantic categories (A and
B) with four items apiece were pretrained into semantic memory
prior to the start of the simulated RIF experiment. The semantic
strength value for each of these items was sampled from a uniform

distribution with a mean of .85 and a half-range of .15. The
purpose of adding noise to the semantic strength values was to
eliminate the possibility of multiple competitors receiving the
exact same level of excitatory support at practice. This situation
(where no one competitor stands out above the others) is undesir-
able because it prevents the network from showing normal attrac-
tor dynamics—when this occurs, the network stays poised on the
boundary between attractor states, and none of the competitors
activate strongly.

Category A served as the practiced category; this category was
subdivided into two target items (A–1, A–2) and two competitor
items (A–3, A–4). The other category served as the control cate-
gory. All eight category–item pairs were presented at study. At
practice, each of the two target items was presented three times.
The type of practice was manipulated in a between-simulated-
subjects fashion. We ran simulations using partial practice, extra
study, and reversed practice. For partial-practice trials, context
scale was set to 1.00 (reflecting the fact that participants are
deliberately thinking back to the study phase). For extra-study and
reversed-practice trials, context scale was set to 0.00 (reflecting the
fact that participants do not have to think back to the study phase
when they are studying items; likewise, they do not have to think
back to the study phase when they are retrieving category mem-
bership information). Standard “dependent” cues (four out of four
active category units and two out of four active item units) were
used at test.

Results

Activation Dynamics at Study

Figure 10 illustrates the activation dynamics that are present at
study (averaging across trials) in the item and hippocampal layers,
for both large (full-sized) oscillations and small (half-sized) oscil-
lations. There are three important points to take away from this
figure:
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● The inhibitory oscillation does not have a strong effect on
item-layer activation at study. There is a slight dip in activa-
tion of the target representation during the high-inhibition
phase but nothing else. This result can be explained by
considering the distributions of net input values associated
with target units versus other units (see Figure 11). Because
all of the target units are receiving strong external input (as
well as strong input from each other) but none of the other
item-layer units are receiving external input, the net input
distribution for target units is located far above the net input
distribution for other units. Given the wide separation be-
tween the distributions, the inhibitory threshold is not very
close to either distribution, so raising the inhibitory threshold
does not cause a strong reduction in target activation, and
lowering the inhibitory threshold does not trigger activation
of competitor units.15

● In the hippocampus, large oscillations (but not small oscil-
lations) cause the hippocampal representation of the target
pattern to dip down. Because the target and its neighbor
pattern overlap extensively in cortex, the hippocampal repre-
sentations of both patterns receive strong net input when the
target is active in cortex. Overall, the target pattern receives
slightly more net input than the target neighbor. As such, the
kWTA algorithm ends up placing the inhibitory threshold just
below the target representation and just above the target
neighbor representation. Since the target representation’s net
input value is not far above threshold, its activity dips down
when inhibition is raised (assuming that the oscillation is
sufficiently large). This dip in target activation leads to
strengthening of the context–item association, as well as

strengthening of connections from the hippocampus back to
the item and associate layers. Importantly, small (half-sized)
oscillations are not powerful enough to displace the hip-
pocampal representation of the target, so virtually no hip-
pocampal learning about the target occurs on small-
oscillation trials.

● The target neighbor pattern pops up in the hippocampus,
but other items from the study list do not. Because (as
mentioned above) the hippocampal representation of the tar-
get neighbor receives strong excitatory support, this represen-
tation pops up strongly when inhibition is lowered. The
hippocampal representations of other study-list items receive
much less excitatory support (because they are much less
similar to the target), so they do not pop up when inhibition
is lowered.

In summary, the primary effect of studying a new item is
strengthening of cortico-hippocampal connections for that item
(triggered by hippocampal dip-down during the high-inhibition
phase). Another important point is that studying new items does
not cause forgetting of memory traces corresponding to other
studied items. The key insight here is that, since the context scale
parameter is set to zero at study, hippocampal competitor pop-up

15 Note that the items used in this simulation had relatively strong
semantic memory traces (mean strength � .85). When we use items with
weaker semantic memory traces, the inhibitory oscillation has a larger
effect on cortical activation at study (thereby serving to strengthen these
items in semantic memory).
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is determined by feature match alone (as opposed to contextual
match). As such, competitor pop-up is dominated by hippocampal
representations corresponding to nonstudied neighbor patterns
(which share a very large number of features with the target), as
opposed to other patterns from the study context (which have a
lesser degree of feature overlap with the target).

Activation Dynamics During the Practice Phase

We can use the same kind of activation dynamics graph to
explore activation dynamics during the practice phase as a function
of practice type (partial practice, extra study, reversed practice).
Figure 12 illustrates how (on average) target and competitor acti-
vation in the item layer and the hippocampal layer fluctuated over
the course of partial-practice trials, extra-study trials, and reversed-

practice trials (in contrast to Figure 10, this figure and all subse-
quent dynamics figures collapse across large-oscillation and small-
oscillation trials).

Dynamics during extra study and reversed practice. Activa-
tion dynamics in the extra-study and reversed-practice conditions
are identical (at least with regard to item-layer and hippocampal-
layer activity), so they are plotted together in the bottom panels of
Figure 12. The overall pattern of dynamics here is the same pattern
that we observed at study: In the item layer, target units do not dip
down (because they are all receiving strong external input), and
competitor units do not pop up. In the hippocampus, close com-
petition between the target and the target neighbor representation
causes the target representation to dip down, but hippocampal
competitor representations do not receive enough support (relative
to targets and target neighbors) to pop up. Thus, we expect to see
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Figure 10. Simulaton: study-phase dynamics. The plots show average activation dynamics (across the span of
a trial) in the item layer and the hippocampal layer for study trials with a large (full-sized) oscillation and trials
with a small (half-sized) oscillation. The solid black line plots activation of the currently studied (target) item’s
representation, the solid gray line plots activation of the target neighbor’s representation, and the dashed gray line
plots the activation of competitors (other study-list items from the practiced category). For all three lines, we only
plot activation of unique features of the representation (i.e., features not shared with other items). The dotted line
plots the time course of the inhibitory oscillation. The inhibitory oscillation does not have a large effect on
activation in the item layer. In the hippocampus, large oscillations (but not small oscillations) result in a decrease
in target activation during the high-inhibition phase. The hippocampal representation of the target neighbor
pattern activates during the low-inhibition phase, but the representations of other items from the target category
(besides the neighbor pattern) do not activate.
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episodic target strengthening but no semantic or episodic compet-
itor punishment in the extra-study and reversed-practice condi-
tions.16

Dynamics during partial practice. Retrieval dynamics in the
partial-practice condition (depicted in the top part of Figure 12)
differ strongly from dynamics in the extra-study and reversed-
practice conditions: In both the item layer and the hippocampal
layer, the target shows a large dip in activation when inhibition is
raised above its normal level, and the competitor shows a large
increase in activation when inhibition is lowered below its normal
level.17

The observed dynamics in the item layer (with the target dipping
down and the competitor popping up) can be explained in terms of
the distribution of net input scores for target units versus other
units (shown in Figure 13). The partial-practice cue provides
external input to three of the four target units. On average, the
remaining target unit receives only slightly more net input than
other (nontarget) units. Given this distribution of net inputs, the
kWTA algorithm places the inhibitory threshold in the (very small)
gap between the weakest target unit and the strongest other unit.
Because the target unit that does not receive external support is just
above threshold (given normal inhibition), raising inhibition re-
sults in a strong decrease in the activation of this unit. Likewise,
because strong competitor units are just below threshold, lowering
inhibition results in a strong increase in the activation of these
units.

The observed dynamics in the hippocampal layer are basically
an echo of the cortical dynamics. When the item-layer represen-
tation of the target drops out during the high-inhibition phase, the
hippocampal representation of the target drops out also (because it
is no longer receiving support from cortex). Furthermore, when
competitor representations pop up in the item layer during the
low-inhibition phase, this provides strong support to competitor
representations in the hippocampus, causing them to pop up also.

In terms of the oscillating learning algorithm, these dynamics
have clear implications for the strength of target and competitor
memories. When the cortical and hippocampal representations of
the target dip down during the high-inhibition phase, this triggers

target strengthening in both semantic and episodic memory. Like-
wise, when competitor representations pop up in cortex and hip-
pocampus during the low-inhibition phase, this leads to competitor
weakening in both semantic and episodic memory.

Effects of repeated practice on dynamics. Figure 14 shows
partial-practice activation dynamics in the item layer and hip-
pocampal layer as a function of the practice trial number (i.e.,
whether this is the first or third time the target item has been
practiced). During the first practice trial, target activation de-
creases sharply during the high-inhibition phase, and competitor
activation increases during the low-inhibition phase. These activa-
tion changes trigger weight changes (target strengthening and
competitor weakening, respectively) that reduce the size of the
activation changes on subsequent practice trials. Thus, the overall
effect of the learning algorithm is to iron out the bumps observed
in the graph.

Effects of Practice on Target and Competitor Recall

Having mapped out the practice-phase dynamics, we now ex-
plore the effects of these dynamics on recall at test. The left-hand

16 The one place where reversed-practice dynamics diverge from extra-
study dynamics is in the associate layer. Because the model is only given
a partial cue in the associate layer during reversed practice, there is some
pop-up of the control category pattern in the associate layer during the
low-inhibition phase. However, this pop-up is inconsequential to the
strength of the target and competitor representations insofar as these items
were not linked to the control category in the first place.

17 On trials where the competitor has a stronger representation in se-
mantic memory than the target, the competitor sometimes displaces the
target in cortex during the low-inhibition phase (see Figure 12, upper
left-hand plot). The net result of this extra dip in target activation is
incremental strengthening of the target (since the learning rate is negative
at this point in the oscillation, increased competitor activity weakens
competitor weights, and decreased target activity strengthens target
weights). In the context of the other weight changes that occur at practice,
the effect of this extra target dip on target recall is negligible.
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Figure 11. Net input at study. This figure schematically illustrates the distribution of net input scores for target
units (marked with a T) and competitor units (marked with a C) in the item layer during a study trial, when
inhibition is set to its normal (baseline) level. Active units (excitation � inhibition) are shown with a white
background color, and inactive units (inhibition � excitation) are shown with a black background color. The
k-winners-take-all rule places the inhibitory threshold between the kth unit and the k � 1st unit. The punishment
zone marks the range of net input values (below the inhibitory threshold) that would be pushed above-threshold
when inhibition is lowered, thereby leading to competitor punishment. The strengthening zone marks the range
of net input values (above the inhibitory threshold) that would be pushed below threshold when inhibition is
raised, thereby leading to target strengthening. The gap in net input between target units and other units is large,
so most target units fall outside of the strengthening zone, and competitor units fall outside of the punishment
zone.
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panel of Figure 15 shows the effects of partial practice, extra study,
and reversed practice on recall of target items in the model. Similar
levels of strengthening were observed in all three conditions. This
matches the widespread finding in the literature of equivalent
strengthening given retrieval practice compared with either extra
study or reversed practice (e.g., M. C. Anderson, Bjork, & Bjork,
2000; M. C. Anderson & Shivde, 2003; Ciranni & Shimamura,
1999). The right-hand panel of Figure 15 shows the effects of
partial practice, extra study, and reversed practice on competitor
recall in the model. Forgetting effects (relative to control items)
were obtained in the partial-practice condition but not the extra-
study condition or the reversed-practice condition. This matches
the findings reviewed earlier (e.g., M. C. Anderson, Bjork, &
Bjork, 2000) showing that RIF is retrieval dependent.

The competitor-recall results follow in a straightforward way from
our dynamics analyses: Competitor pop-up was present for partial

practice but not extra study or reversed practice, which explains why
RIF was observed for the first condition (but not the other two). The
relationship between the target-recall results and practice-phase dy-
namics is less straightforward. As shown in Figure 12, raising inhi-
bition causes a larger target dip (in both the cortical and hippocampal
networks) given partial practice versus extra study or reversed prac-
tice. This is because the target representation is receiving less support
from the cue in the partial-practice condition versus the other condi-
tions. According to the oscillating learning algorithm, this larger target
dip during partial practice should result in greater target strengthening
in this condition.

The reason why partial practice does not yield greater target
strengthening than the other conditions is because target recall
accuracy during practice is worse in the partial-practice condition
than in the other conditions (mean activation of the unique part of
the target representation � .87 in the partial-practice condition vs.
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Figure 12. Simulation: practice-phase dynamics. The plots show average activation dynamics for partial-practice,
extra-study, and reversed-practice trials; these results are from the first practice trial (i.e., the first time this item was
practiced). Extra-study and reversed-practice dynamics are not significantly different from one another and thus are
combined in the figure. The solid black line plots activation of the currently practiced (target) item’s representation,
the solid gray line plots activation of the target neighbor’s representation, and the dashed gray line plots the activation
of competitors (other study-list items from the practiced category). For all three lines, we only plot activation of unique
features of the representation (i.e., features not shared with other items). Note that, here, the competitor line plots the
activation of the most active of the two competitor patterns. The dotted line plots the time course of the inhibitory
oscillation. The partial-practice condition shows a large target activation dip during the high-inhibition phase and a
large competitor pop-up effect during the low-inhibition phase for both networks. The extra-study and reversed-
practice conditions show a large target activation dip in the hippocampal layer, a much smaller target activation dip
in the item layer, and no appreciable pop-up of studied competitor items.
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.97 in the extra-study and reversed-practice conditions). This sim-
ulation result mirrors the fact that, in actual RIF studies, recall
accuracy during partial practice is almost always below ceiling
(e.g., in M. C. Anderson, Bjork, & Bjork, 2000, partial-practice
recall accuracy was .83). On trials where target recall succeeds,
partial practice should yield more strengthening than extra study
and reversed practice (for the reasons outlined above), but on trials
where target recall fails, no target strengthening should occur.18

For the parameters used in this simulation, these two forces (to a first
approximation) cancel each other out. This “canceling-forces” ac-
count aligns well with the explanation of this phenomenon offered in
the original M. C. Anderson, Bjork, and Bjork (2000) study.

Testing for blocking effects. As stated in the Summary of the
Learning Algorithm section, we believe that improved target recall
after partial practice is attributable to target strengthening that
occurs during the high-inhibition phase of the inhibitory oscilla-
tion, and that RIF is attributable to competitor weakening that
occurs during the low-inhibition phase of the inhibitory oscillation.
However, it is also possible that blocking effects are contributing
to the observed pattern of recall data in this simulation: To the
extent that items compete at recall, strengthening targets during the
high-inhibition phase might indirectly hurt recall of competitors
(by increasing the odds that targets will come to mind and block
competitor recall at test). Likewise, weakening competitors during
the low-inhibition phase might indirectly boost recall of targets (by
reducing the odds that competitors will come to mind and block
target recall at test).

To test this idea, we ran follow-up simulations where we re-
stricted learning during partial practice to either the high-inhibition
phase or the low-inhibition phase of the inhibitory oscillation (note
that learning at study used both phases). The results of these
simulations are shown in Figure 16: The high-inhibition-only
simulations show a robust improvement in target recall but no RIF,
and the low-inhibition-only simulations show a robust RIF effect
but no change in target recall.

This pattern of results (showing that it is possible to boost target
recall without hurting competitor recall, and vice versa) provides
strong evidence against the idea that blocking is contributing to
RIF in this simulation. Conversely, these results provide support
for the idea that (in this simulation) RIF is a direct consequence of
competitor weakening that occurs during the low-inhibition phase.
We revisit the issue of blocking in the General Discussion.

Effects of context scale. The above simulations show a stark
difference in forgetting effects observed after partial practice (on
the one hand) versus extra study and reversed practice (on the
other). There are two differences between these conditions in our
simulations: Context scale is set differently (1.00 for partial prac-
tice vs. 0.00 for the other two conditions); also, the item-layer cues
are structured differently (three out of four item-layer units are
externally cued for partial practice, whereas all four item-layer
units are externally cued for the other two conditions). To what
extent is the difference in RIF attributable to the use of different
context scale settings, and to what extent is the difference in RIF
due to the structure of the item-layer cue? To address this question,
we ran a version of the simulation where context scale was set to
1.00 throughout the entire simulation.

The results of this simulation show the same qualitative pattern that
we found in our previous RIF simulations: A robust RIF effect is
present for partial practice but not for extra study or reversed practice.
This finding indicates that the partiality of the retrieval cue, on its
own, is sufficient to account for the observed pattern of RIF effects.19

Learning at test. It is also important to show that the basic
pattern of RIF effects is still observed when we allow learning to
occur at test. To address this question, we reran the above simu-
lations with learning turned on during the test phase (as well as the
study and practice phases). We tested all of the items from one
category before testing any of the items from the other category;
this is standard procedure in RIF studies (see, e.g., M. C. Ander-
son, Bjork, & Bjork, 2000). For half of the simulated participants,
the control category was tested before the practiced category; vice
versa for the other half. Within the practiced category, competitors
were tested before targets, and RIF was measured by comparing

18 Another factor that can reduce target strengthening in the partial-
practice condition is that practiced items can punish each other. For
example, if participants practice retrieving both A–1 and A–2, A–1 might
pop up as a competitor when practicing retrieval of A–2, resulting in
weakening of the A–1 memory.

19 In this simulation, setting context scale to 1.00 at study does not have
any adverse consequences. However, in Simulation 7, we show that using
a high context scale value at study can result in massive (catastrophic)
interference if there is high overlap between input patterns.
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Figure 13. Net input during partial practice. This figure schematically illustrates the distribution of net input
scores for target units (marked with a T) and competitor units (marked with a C) in the item layer during partial
practice, when inhibition is set to its normal (baseline) level. Active units (excitation � inhibition) are shown
with a white background color, and inactive units (inhibition � excitation) are shown with a black background
color. The gap between the lowest target unit and the highest other unit is smaller in the partial-practice condition
than in the extra-study condition. As such, the weakest target unit falls into the strengthening zone, and some
competitor units fall into the punishment zone.
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recall of competitors with recall of items tested in analogous
positions within the control category.20

Figure 17 shows the results of our simulations with learning at
test. Overall, the results are similar to our previous simulations:
There is equivalent strengthening of targets in the three practice
conditions, there is a large RIF effect for competitors in the partial
practice condition, and no RIF is observed in the other conditions.

The fact that learning was activated at test in this simulation
made it possible for us to examine test order effects. Several RIF
studies have found that, when multiple items linked to the same
associate appear at test (e.g., Fruit–A, Fruit–P), recall is better for
items that are tested first versus items that are tested last. Figure 18
illustrates this pattern, using data from Bäuml (1998).21

To explore whether our model shows test order effects, we
compared recall (at test) of the first two control items that were
tested versus the last two control items that were tested. Results of
this analysis are shown in Figure 19. The results shown are from
the partial-practice condition; the same pattern is observed when
the practice phase involves extra study or reversed practice. As
expected, recall is worse for the last two control items that were
tested versus the first two control items. In terms of our theoretical
framework, these test order effects can be attributed to competitor
punishment occurring at test: When the first few items from a
category are tested, other category exemplars pop up as competi-
tors at retrieval and (as a result) are weakened.

Simulation 1.2: Cue-Independent Forgetting

Background

The previous simulations explored RIF with dependent cues
(i.e., where the same cue was used at practice and test). In this
simulation, we explore the critical issue of whether the model

shows RIF when it is probed at test with an independent cue (in
this case, a semantic associate of the to-be-recalled item that was
not itself presented at practice). As discussed in the introduction,
several studies have observed RIF with independent cues (Figure
20 shows representative results from M. C. Anderson & Shivde,
2003), and the presence of this cue-independent effect is a critical
constraint on theories of RIF.

Method

The small size of the network being used here (and our con-
straint that studied item-layer patterns should not overlap) places
limits on the number of patterns that we can accommodate in our
simulations. To accommodate the use of independent cues, we had
to use smaller categories in this simulation (two items per cate-
gory) than in the preceding simulations.

Figure 21 illustrates the structure of the patterns used in this
simulation. The key difference between this simulation and Sim-
ulation 1.1 is that, in addition to the A and B categories, we
pretrained two additional categories (C and D) that overlap with A
and B, respectively. Crucially, the competitor item (2) was seman-
tically linked to both Category A and Category C. Likewise, the
competitor control item (5) was semantically linked to both Cat-

20 We also ran a variant of this simulation where targets were tested
before competitors, and we obtained the same pattern of results.

21 Bäuml (1998) also found that test order effects are larger for seman-
tically strong items than semantically weak items; effects of semantic
strength on RIF are addressed in Simulation 2.1.
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Figure 14. Simulation: activation dynamics in the item layer and hippocampal layer during partial practice, as a
function of practice trial (i.e., whether this is the first or third time the target has been practiced). Repeated practice
reduces the extent to which the target representation dips down during the high-inhibition phase, and repeated practice
also reduces the extent to which the competitor representation activates during the low-inhibition phase.
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egory B and Category D. When pretraining patterns, each pattern’s
semantic strength value was set to .85.22

All eight pretrained pairings (A–1, A–2, C–2, C–3, B–4, B–5,
D–5, D–6) were presented at study. The target item (A–1) was
presented three times at practice. As in the preceding simulations,
we also manipulated practice type in a between-simulated-subjects
fashion (partial practice vs. extra study vs. reversed practice). At
test, we probed for the competitor item (2) using Category C plus
two item units. This constitutes an independent cue insofar as
Category C did not appear at practice. We also probed recall of the
competitor control item (5) using Category D plus two item units.

Results

The results of the independent-cue RIF simulation are shown in
Figure 22. In keeping with the findings of M. C. Anderson and
Shivde (2003), M. C. Anderson and Spellman (1995), M. C.
Anderson, Green, and McCulloch (2000), and many others, the
model shows a robust RIF effect given independent cues (semantic
associates of the target word). As in our dependent-cue simulations
above, the model shows RIF given partial practice but not given
extra study or reversed practice.

The independent-cue RIF effect can be explained in the follow-
ing manner: When the A–1 (partial) cue is presented at practice,
the competitor pattern (2) activates in the item layer during the
low-inhibition phase. This triggers hippocampal pop-up of the A–2
hippocampal representation. It also (to a lesser degree) triggers
hippocampal pop-up of the C–2 hippocampal representation (if
C–2 was encoded in the hippocampus at study). To quantify
competitor pop-up in the hippocampal layer, we measured the
activation of hippocampal representations at the trough of the
inhibitory oscillation (i.e., when inhibition was lowest and com-
petitor activation was at its peak) during the first practice trial.
Peak activation of the A–2 hippocampal representation was .58
(SEM � .01), and peak activation of the C–2 hippocampal repre-
sentation was .17 (SEM � .01). Thus, we end up seeing hippocam-
pal pop-up (and punishment) of both traces that could possibly

support recall of the 2 pattern at test. This, in turn, results in
diminished recall of the 2 pattern using both the A and C cues.

In addition to the hippocampal weakening described above, pop-up
of the competitor’s cortical representation should weaken recall of this
representation, which (in turn) should incrementally reduce recall of
the competitor regardless of the cue. To get a rough estimate of how
much hippocampal weakening versus cortical weakening was con-
tributing to the observed independent-cue RIF effect, we ran one
variant of the simulation where cortical learning was turned off at
practice and another variant where hippocampal learning was turned
off at practice. With both hippocampal learning and cortical learning
at practice, the size of the RIF effect was .048 (SEM � .001). With
hippocampal learning (but not cortical learning) at practice, the size of
the RIF effect was .034 (SEM � .001). With cortical learning (but not
hippocampal learning) at practice, the size of the RIF effect was .008
(SEM � .001). Taken together, these results show that both cortical
and hippocampal learning reliably contribute to RIF but that the
effects of hippocampal learning are proportionally much larger. This
result is a straightforward consequence of the fact that the hippocam-
pal learning rate is larger than the cortical learning rate in these
simulations (2.00 vs. 0.05).

Simulation 1: Discussion

In Simulation 1, we showed that the model captures several key
aspects of the RIF data space:

22 In simulations (like this one) where there is just one competitor item,
it is not necessary to add noise to semantic strength values at pretraining.
The main purpose of adding noise to semantic strength values in Simula-
tion 1.1 was to break ties between competitors, and there is no possibility
of a tie if there is only one competitor. Nonetheless, to match Simulation
1.1, we also ran a variant of this simulation where semantic strength values
were sampled from a uniform distribution with a mean of .85 and a
half-range of .15; the results of this simulation qualitatively match the
results reported here.
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● All three practice conditions (partial practice, extra study,
and reversed practice) boost retrieval of the target item, as
evidenced by better recall of this item versus control items.

● Partial practice leads to RIF (as evidenced by worse recall
of the competitor than control items), but extra study and
reversed practice do not cause forgetting of the competitor.

● Given that we used an independent cue to probe for the
competitor in Simulation 1.2, our results confirm that
competitor punishment can be obtained in the model even
when there is no overlap between the cue used to probe for

the competitor at test (e.g., Red–A) and the cue used to probe for
the target at practice (e.g., Fruit–Pe). This independent-cue RIF
effect arises because of two factors: pop-up (and weakening) of
the hippocampal trace corresponding to the independent cue–
competitor pairing, and also pop-up (and weakening) of the
competitor’s representation in cortex.

In Simulation 7, we discuss boundary conditions on the null
extra-study interference effect. In Simulation 8, we discuss bound-
ary conditions on the finding of equal target strengthening given
extra study versus partial practice.
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Figure 16. Simulation: effect of partial practice on target and competitor recall, when learning at practice is
limited to the low-inhibition phase, and when learning at practice is limited to the high-inhibition phase.
Learning during the high-inhibition phase boosts target recall without hurting competitor recall, and learning
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Figure 17. Simulation: recall as a function of practice type, with learning at test enabled. Graphs show the effect
of partial practice, extra study, and reversed practice on target recall (left-hand graph) and competitor recall (right-hand
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preceding simulations: All three practice conditions lead to equivalent levels of target strengthening. For competitors,
there is a large retrieval-induced forgetting effect in the partial-practice condition but no forgetting effects in the
extra-study and reversed-practice conditions. Error bars indicate the standard error of the mean.
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Simulation 2: Effects of Competitor Strength and Target
Strength on RIF

In this simulation, we explore how competitor strength and
target strength interact with RIF. In Simulation 2.1, we simulate
results from a study by M. C. Anderson et al. (1994) that orthog-
onally manipulated competitor and target strength. In Simulation
2.2, we parametrically explore effects of target strength on RIF,
and in Simulation 2.3, we explore how adjusting the strength of
competitors relative to each other affects RIF.

Simulation 2.1: Simulation of M. C. Anderson, Bjork, and
Bjork (1994)

Background

The first RIF experiment to explore effects of target strength and
competitor strength in detail was M. C. Anderson et al. (1994). As
mentioned earlier, Anderson et al. found that partial practice of
items like Fruit–Pear led to RIF for semantically strong competi-
tors (e.g., Fruit–Apple) but not for semantically weak competitors
(e.g., Fruit–Kiwi; but see Williams & Zacks, 2001, for a failure to
replicate this result). Bäuml (1998) obtained a similar result using
an output interference paradigm: Retrieving moderate-frequency

items at test led to forgetting of subsequently-tested strong items
but not of subsequently tested weak items. With regard to target
strength, in the same study where they manipulated the semantic
strength of competitors, Anderson et al. also manipulated the
semantic strength of target items and found no effect of target
strength on RIF. The data from Anderson et al.’s Experiment 3
(showing the pattern described above) are shown in Figure 23.23

In this simulation, we show that our model can generate the
pattern of results observed by M. C. Anderson et al. (1994). The
finding of more punishment for strong versus weak competitors is
highly compatible with the explanatory framework outlined earlier
(in the Summary of the Learning Algorithm section). Figure 24
schematically illustrates the amount of net input received by target
units, units belonging to strong competitors, and units belonging to
weak competitors. Units belonging to strong competitors receive
more input from the retrieval cue than units belonging to weak
competitors. Because units belonging to strong competitors are
closer to threshold than units belonging to weak competitors, units
belonging to strong competitors are more likely to pop up (and be
punished) when inhibition is lowered.

Explaining how the model gives rise to equivalent RIF given
strong versus weak targets is more complex, insofar as the model
predicts lower overall pop-up of competitors given strong versus
weak targets:

● In the model, strengthening a target pattern amounts to
strengthening the connections between the units in that pat-
tern. As such, units participating in strong target patterns
receive more net input (from each other) than units partici-
pating in weak target patterns. Figure 25 illustrates hypothet-
ical net input distributions given a strong target versus a weak
target.

23 Figure 23 shows a numerical trend toward a reversed RIF effect for
weak competitors, but this effect was not consistent across experiments in
M. C. Anderson et al. (1994).
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Figure 18. Data from Bäuml (1998, strong item condition) showing test
order effects: Recall was better for the first three items that were tested
from a particular category versus the last three items that were tested from
that category.
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Figure 19. Simulation: recall of control items as a function of within-
category test order. When learning is turned on at test, recall is worse for
the last two control-category items that are tested compared with the first
two control-category items that are tested. Error bars indicate the standard
error of the mean.
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Figure 20. Data from M. C. Anderson and Shivde (2003) showing the
effects of partial practice and extra study on competitor recall, when
memory was tested using independent cues (semantic associates of the
competitor that were not presented at practice). Partial practice impaired
competitor recall using independent cues, but extra study did not.
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● The kWTA rule places the inhibitory threshold between the
kth unit (typically, the weakest target unit) and the k � 1st
unit. Thus, boosting the amount of net input received by
target units has the effect of boosting the inhibitory threshold
(pulling it away from competitors).

● Because competitors are farther below the inhibitory thresh-
old in the strong target condition, they are less likely to pop
up when inhibition is lowered.

On the basis of this information alone, one would expect less
RIF given strong versus weak targets. However, as demonstrated

below, varying target strength also changes the timing of compet-
itor pop-up: When targets are weak, competitor activation starts to
spill over into the high-inhibition (target strengthening) phase of
the oscillation, reducing RIF. In this simulation, the spillover effect
canceled out the effects of greater overall competitor activation in
the weak target condition, thereby making it possible for us to
simulate the null effect of target strength on RIF observed by M. C.
Anderson et al. (1994).

Method

In M. C. Anderson et al. (1994), Experiment 3, target strength
and competitor strength were manipulated in a between-subjects
fashion. The same semantic categories were used in all conditions.
The four conditions of their experiment were defined by orthog-
onally crossing the following two factors:

● Whether strong or weak items from these categories served
as targets, and

● Whether strong or weak items from these categories served
as competitors.

We set out to mirror this design in our simulations. To do this,
we needed semantic categories that had more than one weak item
(so we could simultaneously have a weak target and a weak
competitor) and more than one strong item (so we could simulta-
neously have a strong target and a strong competitor). We settled
on using eight items per category, with four strong items and four
weak items. Having four strong items helped to spread out the
competitor weakening that occurred at practice such that no single
item suffered a disproportionate amount of semantic weakening.
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Figure 21. Illustration of the structure of patterns used in Simulation 1.2. Gray bars indicate pairings that were
pretrained into semantic memory, black lines indicate pairings that were presented at study, and numbers below
the item-layer circles indicate mean semantic strength values for those items. The key feature of this design is
the inclusion of additional (independent) category cues C and D that can be used to access the competitor and
the competitor control, respectively.
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Figure 22. Simulation: independent-cue competitor recall as a function of
practice type. Retrieval-induced forgetting is observed in the partial-
practice condition but not in the extra-study condition or the reversed-
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With eight-item categories, there was no room to fit patterns for
two categories (8 � 2 � 16 total items, plus 16 neighbors) into the
item layer without allowing overlap between item patterns. Rather
than use overlapping item-layer patterns, we decided that it would
be simpler to forgo our standard two-category procedure and use a
single category.24 Since we did not have a control category in this
simulation, we measured RIF by testing recall performance (with
learning turned off) before practice and after practice and then
computing the pretest–posttest difference score.

Figure 26 illustrates the structure of the patterns used in the
simulation. During pretraining, we sampled semantic strength val-
ues for the four weak category exemplars from a uniform distri-
bution with a mean of .65 and a half-range of .10, and we sampled
semantic strength values for the four strong category exemplars
from a uniform distribution with a mean of .90 and a half-range of
.10. In all of the conditions, four items were presented at study
(two targets and two competitors). The only difference between the
conditions was whether strong or weak items were used as targets
and whether strong or weak items were used as competitors. We
used partial practice during the practice phase. Finally, as per
M. C. Anderson et al. (1994), we used dependent cues (our
standard cues: four out of four associate units and two out of four
item units) at test.

Results

Results from these conditions are shown in Figure 27. Overall,
the results from this simulation line up well with the results from
M. C. Anderson et al. (1994): Increasing competitor strength leads
to a large increase in RIF, but increasing target strength by the
same amount does not affect RIF. As per Anderson et al., there is
no RIF whatsoever for weak competitors.

Effects of Competitor Strength

The finding of greater RIF for strong versus weak competitors
(in the model) can be explained in terms of the principles ex-
pressed in Figure 24. Semantically strong competitors are closer to

the inhibitory threshold in cortex, so they show a larger increase in
cortical activation when inhibition is lowered. This cortical pop-up
for strong competitors triggers hippocampal pop-up for these com-
petitors also. Collapsing across the strong target and weak target
conditions, peak competitor activation in cortex (at the trough of
the inhibitory oscillation) during the first practice epoch was .21 on
average for strong competitors (SEM � .00) and .00 for weak
competitors (SEM � .00). Hippocampal pop-up results were very
similar: .21 for strong competitors (SEM � .00) and .00 for weak
competitors (SEM � .00).

Another key to explaining the null RIF effect for weak compet-
itors is that, for the parameters used here, hippocampal pop-up
only occurs if cortical pop-up occurs first. More concretely, the
hippocampal representation of the competitor needs support from
the item-layer representation of the competitor to have enough
excitatory support (in aggregate) to trigger pop-up. Thus, the fact
that weak competitors do not pop up in the item layer ensures that
these competitors will not pop up in the hippocampus either.

Effects of Using a Higher Context Scale Value

One way to underscore the importance of this dynamic
(whereby cortical pop-up is a permissive condition for hippocam-
pal pop-up) is to change the model’s parameters such that hip-
pocampal pop-up of the competitor can occur on its own. Specif-
ically, we ran simulations where we increased the context scale
parameter at practice and test from 1.00 to 1.25. This change
selectively boosts the excitation of episodic traces from the study
phase, making it more likely that these traces will pop up when
inhibition is lowered. Whereas weak competitors do not show any
pop-up (in cortex or hippocampus) for context scale � 1.00, they
show a significant pop-up effect in both networks for context
scale � 1.25; pop-up starts in the hippocampus and spreads back
to cortex. Collapsing across the strong target and weak target

24 We address the issue of item-layer overlap in Simulation 7 and in the
General Discussion.
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Figure 23. Data from M. C. Anderson, Bjork, and Bjork (1994, Experiment 3): retrieval-induced forgetting
(RIF) as a function of target strength and competitor strength. There was RIF for strong competitors but not for
weak competitors (in both the weak target and strong target conditions). RIF effects were of similar size in the
strong target condition and the weak target condition.
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conditions, peak competitor activation in the hippocampus was .24
on average for strong competitors and .10 for weak competitors
(cortical pop-up results were very similar: .22 for strong compet-
itors and .05 for weak competitors). This pop-up of weak compet-
itors results in a substantial RIF effect for weak competitors,
illustrated in Figure 28.25, 26 We revisit the issue of how context
scale interacts with episodic RIF in Simulation 4.

Effects of Target Strength

To gain further insight into why the model did not show an
effect of target strength on RIF, we plotted dynamics graphs
showing competitor activation in cortex (over the course of the
first partial-practice trial) for the weak target, strong competitor
condition and the strong target, strong competitor condition (see
Figure 29). As in our previous dynamics graphs, the competitor
activation line shows the activation of the more active of the two
(strong) competitors on a given trial.

The figure clearly illustrates how target strength affects the
dynamics of competitor pop-up: In the weak target, strong com-
petitor condition, the competitor starts to activate before the onset
of the low-inhibition phase. The fact that some competitor activa-
tion takes place during the end of the high-inhibition (strengthen-
ing) phase, instead of during the low-inhibition (weakening) phase,
should reduce RIF. Increasing the strength of the target has two
effects on competitor activation: First, it pushes back competitor
activation so it occurs later in the trial. This has the effect of
boosting competitor punishment (by ensuring that all of the com-
petitor activation occurs during the low-inhibition phase). Second,
as discussed earlier, increasing target strength reduces the overall
magnitude of competitor activation during the low-inhibition
phase, which should reduce competitor punishment. For the pa-
rameters used in this simulation, these two effects cancel each
other out, resulting in a null overall effect of target strength on
RIF.

Having demonstrated that the model can simulate the two key
results from M. C. Anderson et al. (1994) (i.e., increasing com-
petitor strength boosts RIF, but increasing target strength does not
affect RIF), we now explore boundary conditions on these find-
ings. First, in Simulation 2.2, we show that increasing target
strength does reduce RIF if we use a more powerful target strength
manipulation. Next, in Simulation 2.3, we show that RIF is af-

fected by the strength of competitors relative to each other, in
addition to the strength of competitors relative to targets.

Simulation 2.2: Boundary Conditions on the Null Target
Strength Effect

Method

To parametrically map out the effects of target strength on RIF,
we used a simpler paradigm in which the model was pretrained on
two categories, each comprised of two items (the practiced cate-
gory was comprised of one target and one competitor item; the
control category was comprised of one target control and one
competitor control). The paradigm is illustrated in Figure 30.

The competitor item and its control in the other category were
pretrained with a mean semantic strength of .85. The semantic
strength of the target item (and its control in the other category)
was varied in a between-simulated-subjects fashion from .65 to .95
in steps of .05.27

The target item was practiced once, using our usual partial-
practice procedure. Our decision to use one practice trial (instead

25 In this simulation, the RIF effect is even larger for weak competitors
than for strong competitors. This is a consequence of the fact that strong
competitors can sometimes be retrieved correctly via semantic memory if
their episodic trace is damaged but weak competitors cannot—if their
episodic trace is damaged, they are almost always forgotten.

26 The finding that weak competitors show RIF given a context scale of
1.25 raises the possibility that—if we had included control items—RIF
would also be observed for these control items. Control items, like com-
petitors, are linked to a representation of the study context during the study
phase. As such, cuing strongly with the study context could (in principle)
trigger pop-up and RIF for controls. As discussed by M. C. Anderson
(2003), this kind of baseline deflation effect might make it hard to observe
RIF in a standard comparison of competitor versus control items. In
Simulation 4, we show that baseline deflation happens in the model only
when context scale is set to an extremely high value (much higher than the
1.25 value used here)—as such, baseline deflation is not a concern in the
present simulation.

27 To smooth out the curve relating target strength to RIF, we added
noise sampled from a uniform distribution with a mean of 0.00, half-range
of .05, to the semantic strength values of targets, competitors, and their
controls. The same qualitative pattern is present if we do not add noise.

Net Input (Excitation)

punishment zone

TT T TSS S SWW W W

Figure 24. Competitor strength effects. This figure schematically illustrates the distribution of net input scores
for target units (marked with a T), units belonging to strong competitors (marked with an S), and units belonging
to weak competitors (marked with a W). Active units (excitation � inhibition) are shown with a white
background color, and inactive units (inhibition � excitation) are shown with a black background color. Units
belonging to strong competitors are closer to the inhibitory threshold, thereby leading to greater pop-up of these
competitors during the low-inhibition phase.
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of three) stemmed from our desire to precisely control target
strength—insofar as each practice trial changes both target
strength and competitor strength, item strength values that are
present on the second practice trial (and subsequent practice trials)
might deviate considerably from the original item strength settings.

Our decision to use one target item (instead of two) was also
driven by our desire to keep the target strength manipulation as
pure as possible. Consider a situation where there are multiple
target items (say, A–1 and A–2). In this situation, strengthening
the two target items affects retrieval dynamics during A–1

Weak Target

Strong Target

Net Input (Excitation)

C C C T

T T T TC C C

C

C

T T T

punishment zone

punishment zone

Figure 25. Target strength effects. The figure schematically illustrates the distribution of net input scores for
target units (marked with a T) and competitor units (marked with a C) for weak targets (upper bar) and strong
targets (lower bar). Active units (excitation � inhibition) are shown with a white background color, and inactive
units (inhibition � excitation) are shown with a black background color. Competitors are closer to the inhibitory
threshold in the weak target condition than the strong target condition, so they are more likely to pop up in the
weak target condition.
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Figure 26. Illustration of the structure of the patterns used in Simulation 2.1. Gray bars indicate semantically
pretrained pairings, black lines indicate pairings that were presented at study, and numbers below the item-layer
circles indicate the semantic strength of each item. There were four conditions, defined by orthogonally crossing
target strength (weak/strong) and competitor strength (weak/strong). Semantic pretraining was the same in all
four conditions: There was one category, paired with four strong items (strength � .90) and four weak items
(strength � .65). The only difference between the conditions was which two items were used as targets and
which two items were used as competitors.
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practice trials in two qualitatively distinct ways: The strength-
ening manipulation boosts the strength of the currently-
practiced item (A–1), but it also boosts the extent to which A–2
competes with A–1. Put another way, increasing the strength of
multiple targets also has the side effect of changing the com-
petitive landscape that is present when any one of those targets
is practiced. Limiting ourselves to a single target item gets rid
of this side effect and allows us to observe (without any
confounds) the effect of changing target strength on RIF.

Results

Figure 31 plots the effect of target strength on competitor recall.
Crucially, the figure shows that increasing target strength has a
nonmonotonic effect on RIF. Increasing target strength from .65 to

.75 boosts RIF, but additional increases in target strength reduce
competitor punishment.

The nonmonotonic pattern observed here can be explained in
terms of the two effects of target strength mentioned earlier:
Increasing target strength causes competitor activation to occur
later, and it also reduces the overall amount of competitor
activation. These two competing influences are shown in Figure
32, which plots competitor activation in cortex at the onset of
the low-inhibition phase and at the peak of the low-inhibition
phase. Competitor punishment in the model is a function of how
much competitor activation changes during the low-inhibition
phase. Thus, the difference between initial competitor activa-
tion and peak competitor activation should be a good predictor
of RIF. In keeping with this view, the difference between initial
and peak activation shows the same nonmonotonic pattern that
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Figure 27. Simulation: retrieval-induced forgetting (RIF) as a function of target strength and competitor
strength, when context scale is set to 1.00 at practice and test. In this simulation, RIF is affected by competitor
strength (there is a robust RIF effect for strong competitors but no RIF effect for weak competitors), but target
strength has no effect on RIF. Error bars indicate the standard error of the mean.
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Figure 28. Simulation: retrieval-induced forgetting (RIF) as a function of target strength and competitor
strength, when context scale is set to 1.25 at practice and test. Unlike the simulations with context scale set to
1.00 (which show a null RIF effect for weak competitors), the simulations with context scale set to 1.25 show
a very large RIF effect for weak competitors (even larger than the RIF effect for strong competitors). Error bars
indicate the standard error of the mean.
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was present in the RIF results (see Figure 31). At first, increas-
ing target strength boosts the peak–initial difference by reduc-
ing the amount of competitor activation that is present at the
start of the low-inhibition phase. Subsequent increases in target
strength reduce the peak–initial difference by reducing the peak
level of competitor activation.

Simulation 2.3: Effects of Relative Competitor Strength

Our explanation of competitor strength effects (e.g., in Figure
24) has, up to this point, focused on the strength of competitors
relative to targets as a key determinant of competitor punishment.
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Figure 29. Simulation: competitor activation dynamics in cortex (during the
first partial-practice trial) for the weak target, strong competitor condition and
the strong target, strong competitor condition. In the weak target condition, the
competitor starts to activate before the onset of the low-inhibition phase.
Increasing target strength makes competitor activation occur later in the trial,
and it also reduces the overall amount of competitor activation.
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pretrained into semantic memory, black lines indicate pairings that were presented at study, and numbers below
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Figure 31. Simulation: retrieval-induced forgetting (RIF) as a function of
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Here, we show that (in addition to being affected by the strength
of competitors relative to targets), competitor punishment also is
affected by the strength of competitors relative to each other. This
occurs because the kWTA inhibition rule factors in the level of
excitatory support for both target and competitor units when com-
puting inhibition. Specifically, as discussed in the Role of Inhibi-
tion in Recurrently Connected Networks section and shown in
Figure 3, kWTA places the inhibitory threshold between the kth
most excited unit (typically, this is the weakest target unit) and the
k � 1st most excited unit (typically, this is the strongest competitor
unit). As such, any manipulation that increases the amount of
excitation received by the strongest competitor will have the effect
of boosting the inhibitory threshold computed by kWTA, thereby
making it less likely that other (less well-supported) competitors
will pop up at practice. In this simulation, we explore the effects of
relative competitor strength by holding the strength of some com-
petitors constant and manipulating the strength of other competi-
tors.

Method

The design of Simulation 2.3 is illustrated in Figure 33. Like
Simulation 1.1, this simulation used two categories with four items
apiece (two targets, two competitors). For the practiced category,
the two targets had a mean strength of .85; one competitor (the
fixed-strength competitor) had a fixed mean strength of .85; for the
other competitor (the variable-strength competitor), mean strength
was varied from .65 to .95 in steps of .10. Strength values for the
control category were matched to strength values for the practiced
category. For items in both the practiced and control categories,

uniform noise with a mean of 0 and a half-range of .10 was added
to items’ semantic strength values during pretraining.

Results

Figure 34 shows the results of the simulation: As discussed
above, raising the strength of the variable-strength competitors
reduces RIF for the fixed-strength competitors. Figure 35 provides
further insight into the results of the relative-competitor-strength
simulations. The figure plots the peak activation (during the low-
inhibition phase, in cortex) of the variable-strength competitor and
the fixed-strength competitor as a function of the strength of the
variable-strength competitor: As the variable-strength competitor
is strengthened, pop-up of this item increases, and pop-up of the
fixed-strength competitor decreases. This decrease in pop-up for
the fixed-strength competitor explains the decrease in RIF shown
in Figure 34.

Effects of Relative Competitor Strength in Our Simulation
of M. C. Anderson et al. (1994)

These ideas about relative competitor strength might also help to
explain the lack of RIF for weak competitors in Simulation 2.1.
Specifically, the idea that strong competitors can occlude weaker
competitors suggests that, if we lowered the strength of the strong
competitors in Simulation 2.1, we might start to see some cortical
pop-up of weak competitors.

To test this idea, we took the weak target, weak competitor
condition from Simulation 2.1 (where the four weak category
exemplars were presented at study and the four strong category
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Figure 32. Simulation: competitor activation in cortex during the low-inhibition phase, as a function of target
strength. The left-hand graph shows competitor activation as a function of time for target strength values of .65,
.75, .85, and .95. The right-hand graph replots these results, showing the activation of the competitor at the onset
of the low-inhibition phase and the peak activation of the competitor (at the middle of the low-inhibition phase).
For weak target strength values, the competitor activates strongly (its peak activation is high), but it also starts
to activate early, before the onset of the low-inhibition phase. The primary effect of raising target strength from
.65 to .75 is to make competitor activation occur later (without much change in peak competitor activation).
Further increases in target strength reduce peak competitor activation.
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exemplars were nonstudied) and varied the strength of the four
nonstudied category exemplars. The average strength of these
nonstudied items was varied from .90 (the value used in Simula-
tion 2.1) all the way down to .60, in increments of .10. On the basis
of the results shown in Figure 34, we expected that reducing the
strength of these nonstudied, strong competitors should boost
pop-up (and RIF) for studied, weak competitors.

Figure 36 shows the results of our simulation. As expected, we
found that reducing the strength of the four nonstudied items
boosts RIF for the studied, weak competitors. When nonstudied-
item strength is set to .90 (the value we used for strong items in
Simulation 2.1), there is no RIF for the weak (strength � .65)

competitors. When nonstudied-item strength is reduced, a robust
RIF effect emerges for the weak competitors (driven by pop-up of
these items during the low-inhibition phase). This finding under-
scores that, when trying to predict RIF effects, the “weakness” of
a particular competitor should always be computed relative to
other competitors: Simulation 2.1 showed that weak competitors
are not strong enough to trigger pop-up and RIF in the presence of
other, much stronger category exemplars; however—as shown in
this simulation—the very same competitors are strong enough to
trigger pop-up and RIF when other (nonstudied) category exem-
plars are relatively weak.
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Figure 33. Illustration of the structure of the patterns used in Simulation 2.3. Gray bars indicate pairings that
were pretrained into semantic memory, black lines indicate pairings that were presented at study, and numbers
below the item-layer circles indicate the mean strength of that pattern in semantic memory. The design is the
same as the design used in Simulation 1.1, except that we varied the semantic strength of one of the competitors
from .65 to .95 (the mean semantic strength of the other competitor was fixed at .85). Comp. � competitor.
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Figure 34. Simulation: retrieval-induced forgetting (RIF) of the fixed-
strength competitor (strength � .85) as a function of the other competitor’s
strength. As the variable-strength competitor is strengthened, RIF for the
fixed-strength competitor decreases. Error bars indicate the standard error
of the mean.
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Figure 35. Simulation: effect of relative competitor strength on compet-
itor activation. The plot shows peak competitor activation (pop-up) in
cortex during the low-inhibition phase at practice, as a function of the
strength of the variable-strength competitor. As the variable-strength com-
petitor is strengthened, pop-up of this competitor increases, and pop-up of
the fixed-strength competitor decreases (thereby explaining the decrease in
retrieval-induced forgetting shown in Figure 34).
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Summary and Discussion of Simulation 2

Competitor Strength

These simulations point to the importance of evaluating both the
strength of the competitor relative to the target and the strength of
the competitor relative to other competitors when predicting RIF
effects. One clear prediction from Figure 34 is that, if we held
target strength and competitor strength (for some competitors)
constant and increased the strength of other competitors, this
should reduce the amount of RIF that we observe for the compet-
itors whose strength is not being manipulated. The results shown
in Figure 36 also suggest that it should be possible to observe RIF
for semantically weak competitors in situations where these items
are not occluded by stronger competitors.

Target Strength

The target strength simulation results presented here are consistent
with the idea, expressed earlier, that RIF should asymptotically de-
crease as targets are strengthened (see Figure 25). Also, our simula-
tion results add an important boundary condition to this effect: In
situations where the target is particularly weak, the competitor may
start to pop up prematurely (before the start of the low-inhibition
phase), thereby reducing RIF. When this happens, increasing target
strength can actually boost RIF by causing competitor activation to
occur later (so it is fully confined to the low-inhibition phase). Our
analytic simulations suggest that the true shape of the curve relating
target strength to RIF is nonmonotonic: Going from very weak to
slightly stronger targets reduces premature pop-up of the competitor,
boosting RIF. Further increases in target strength reduce RIF by
reducing the overall amount of competitor pop-up. Thus, the null
effect of target strength on RIF observed by M. C. Anderson et al.
(1994) (and replicated in Simulation 2.1) may be a consequence of the
particular points on the target strength continuum that were sampled

in that experiment, rather than being a parameter-independent prop-
erty of RIF. This account leads to the following prediction: By
selecting appropriate target strength values for weak and strong tar-
gets such that weak targets are close to the peak of the curve shown
in Figure 31 and strong targets are located on the right side of the
curve (i.e., extremely strong), it should be possible to demonstrate a
robust reduction in RIF with increasing target strength.

Another point is that, in the simulations presented here, we used
retrieval cues at practice that strongly favored the target over the
competitor and we explored only a limited range of competitor and
target strength values. For these parameter values, we found that
changing target strength modulates the degree of competitor pun-
ishment (by varying the timing and amount of competitor pop-up),
but it does not alter the basic fact that the competitor loses the
retrieval competition at practice, resulting in a net weakening
effect for the competitor. Importantly, the model’s behavior can be
quite different in other situations: If the competitor is extremely
strong (relative to the target) and the retrieval cue is not suffi-
ciently specific, the model may end up recalling the competitor
instead of the target, thereby leading to strengthening of the
competitor. This fits with data from Johnson and Anderson (2004),
who ran an RIF study using homographs (e.g., prune) as stimuli.
When participants were asked to recall the subordinate meaning of
the homograph ( prune as in trim), this sometimes led to improved
recall of the dominant meaning ( prune as in fruit); for a similar
result, see Shivde and Anderson (2001). In keeping with the ideas
expressed here, Johnson and Anderson explained these findings in
terms of participants inadvertently recalling the dominant meaning
when they tried to recall the subordinate meaning, thereby result-
ing in strengthening of the dominant meaning.

One final point regarding target strength effects relates to the
issue of blocking. M. C. Anderson et al. (1994) pointed out that
target strength effects (less competitor punishment for strong tar-
gets) could arise for reasons other than competitor weakening per
se. For example, if weak targets undergo more strengthening than
strong targets at practice (due to ceiling effects or other factors),
this will differentially increase weak targets’ ability to block
competitor recall at test. This differential increase in blocking
could, on its own, result in more RIF given weak versus strong
targets. While we agree that (logically) this is a possibility, we are
sure that blocking is not solely responsible for the simulation
finding (shown in Figure 31) that, as target strength increases,
competitor punishment asymptotically starts to decrease. If this
finding were attributable to indirect effects of target strengthening,
it should go away when we turn off learning during the high-
inhibition phase at practice (where target strengthening takes
place; see Figure 16). However, we ran additional control simu-
lations (not shown here) and found that the same qualitative
pattern of target strength results is obtained when we turn off
learning during the high-inhibition phase.

Simulation 3: Semantic Generation Can Cause
Episodic RIF

Background

The previous simulations focused on the effects of episodic
retrieval practice (i.e., actively trying to find a studied completion
for a partial cue) on subsequent recall. Bäuml (2002) asked a
different, related question: How does semantic generation (i.e.,
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Figure 36. Simulation: retrieval-induced forgetting (RIF) in the weak target,
weak competitor condition of Simulation 2.1, as a function of the strength of
the four nonstudied category exemplars. When these nonstudied items have
much stronger semantic representations than the four studied items (studied
strength � .65, nonstudied strength � .90), the nonstudied, strong items
occlude the studied, weak items, preventing them from popping up at practice
and thus preventing RIF for these items. Weakening the four nonstudied items
increases the odds that studied competitors will pop up at practice, thereby
boosting RIF for these items. Error bars indicate the standard error of the mean.
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generating a completion in semantic memory for a partial cue)
affect memory for related studied items? The design that Bäuml
used is very similar to the standard RIF paradigm used in Simu-
lation 1.1: First, participants studied category–exemplar pairs.
Then, during the practice phase, participants were given partial
cues that could be completed using previously nonstudied exem-
plars from studied categories, and they were asked to semantically
generate those items. For example, participants might study Fruit–
Apple (but not Fruit–Pear); then, during the practice phase, par-
ticipants would be asked to semantically generate a match to the
cue Fruit–Pe. The practice phase was framed as a separate task
from the study phase. Participants were not asked to think back to
the study phase at all (nor would it help if they did think back,
since none of the to-be-generated items were presented at study).
At test, participants were asked to retrieve pairs from the initial
study phase using dependent cues. Thus, the study phase and test
phase were identical to the standard RIF paradigm illustrated in
Figure 1. The only difference was the practice procedure. Bäuml
also included a control condition where participants simply studied
new exemplars from studied categories at practice (instead of
semantically generating these exemplars).

Figure 37 shows the results from the Bäuml (2002) experiment.
Semantic generation of new exemplars from studied categories led
to RIF for previously studied items, but mere presentation of those
exemplars did not cause forgetting. For a replication of the finding
that semantic generation causes RIF, see Storm, Bjork, Bjork, and
Nestojko (2006).28 The goal of Simulation 3 is to explore whether
the model could accommodate this pattern of results.

Method

Figure 38 illustrates the structure of the patterns used in Simu-
lation 3. The procedure that we used for this simulation was very
similar to the procedure that we used in Simulation 1.1: As in
Simulation 1.1, we pretrained two categories with four exemplars
apiece; the semantic strength value for each of these items was
sampled from a uniform distribution with a mean of .85 and a
half-range of .15. However, unlike Simulation 1.1 (where all four
items from each category were presented at study), here we pre-
sented only two out of four items from each category at study.

There were two practice conditions that were manipulated in a
between-simulated-subjects fashion:

● In one condition (the semantic generation condition), the
model was given partial cues matching the nonstudied items
from one category.

● In the other condition (the extra-study condition), the model
was given full cues matching the nonstudied items from one
category.

In both practice conditions, the model was given three presenta-
tions of each of the two practice cues (as per our usual procedure).
The context scale parameter was set to zero for both practice condi-
tions (reflecting the fact that, in both conditions, participants were not
actively thinking back to the study phase). Also, we used a different
context tag at practice from the context tag that was present at study.
This mirrored the fact that (in the experiment) the practice phase was
framed as a completely separate task from the study phase.29 At test,

we activated the study context tag in the context layer, and we used
our standard dependent cues (four out of four associate units, two out
of four item units) to probe for the studied items.

Results and Discussion

Figure 39 shows the results of our simulation, which match the
Bäuml (2002) results: RIF is present after semantic generation but
not after extra study. The reason why RIF occurs after semantic
generation is very similar to the reason why RIF occurred after
partial practice in Simulations 1 and 2: When inhibition is lowered,
items that are semantically associated with the category cue start to
become active in cortex. If one of these semantic associates hap-
pens to be an item that was studied, this triggers activation of the
hippocampal trace of that item (from the study phase). This pop-up
of the hippocampal trace during the low-inhibition phase leads to
RIF for the hippocampal trace.

Likewise, the reason why RIF does not occur after extra study
in this simulation is identical to the reason why RIF did not occur
after extra study in Simulation 1: When all four item units are
externally cued (and the item’s representation is strong in semantic
memory), the practiced item’s representation in cortex is far

28 A recent study by Racsmany and Conway (2006, Experiment 6) also
looked at effects of semantic generation on recall of previously studied
category exemplars and failed to find an RIF effect. There were several
procedural differences between the Racsmany and Conway study and the
Bäuml (2002) and Storm et al. (2006) studies; for example, Racsmany and
Conway used category cues (without item stems) on the final recall test,
whereas the other studies used category-plus-one-letter cues on the final
recall test. Further research is needed to address which of these differences
was responsible for the observed difference in RIF.

29 Because context scale was set to zero at practice, changing the context
tag between study and practice does not affect the results of this simulation;
the same pattern of results is observed when identical context tags are used
at study and practice.
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Figure 37. Data from Bäuml (2002): effect of semantic retrieval practice
on competitor recall. Semantically generating nonstudied exemplars from
studied categories caused retrieval-induced forgetting (RIF) for previously
studied category exemplars, but simply studying new exemplars (instead of
semantically generating them) did not cause RIF. Error bars indicate the
standard error of the mean.
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enough above threshold (and the competing items’ representations
are far enough below threshold) that no competitor pop-up occurs
during the low-inhibition phase (see Figure 13).

Boundary Conditions

Overall, the dynamics in this simulation are quite similar to the
dynamics observed in previous simulations. As such, the points
made above (in Simulation 2) regarding effects of target and
competitor strength also apply here. For example, in situations
where a category includes both strong and weak exemplars, se-

mantic generation (of either strong or weak exemplars) does not
cause RIF for weak category exemplars in the model.30

Simulation 4: RIF for Novel Episodic Associations

Background

Simulations 1, 2, and 3 used a paradigm where participants were
asked to remember preexperimentally associated pairs (e.g., Fruit–
Apple). However, as mentioned in the introduction, RIF effects can
also be observed when novel pairings are used at study (forcing
participants to rely entirely on episodic memory). For example, M. C.
Anderson and Bell (2001) had participants study sentences like “The
teacher lifted the violin.” The pairings of sentence frames (“teacher
lifted”) and objects (“violin”) were deliberately selected to minimize
obvious semantic relationships, so participants could not rely on
semantic memory in this experiment. Later, participants were asked to
retrieve violin using cues like “The teacher lifted the v.”

The M. C. Anderson and Bell (2001) study used a standard study–
practice–test RIF design. The key difference between the Anderson
and Bell study, on the one hand, and the studies simulated in Simu-
lations 1, 2, and 3, on the other, relates to how the practiced and
control sets were defined at study. In Simulations 1, 2, and 3, the
practiced and control sets were defined by virtue of common semantic
associations (i.e., items from the practiced set came from one seman-
tic category, and items from the control set came from another
semantic category). In contrast, in the Anderson and Bell study, the

30 To validate this point, we ran a variant of Simulation 2.1 where targets
were not studied, context scale was set to zero at practice (to simulate
semantic generation), and different context patterns were used at study and
practice. As in Simulation 2.1, no RIF was observed for studied weak
competitors.
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practiced and control sets were defined by virtue of common episodic
associations. For example, in Anderson and Bell, some words were
paired at study with the sentence frame “The actor is looking at,” and
other words were paired at study with the sentence frame “The teacher is
lifting.” During the practice phase, participants might practice retrieving
some of the “teacher is lifting” words but none of the “actor is looking at”
words.

The basic question addressed by M. C. Anderson and Bell (2001)
is the same as in previous simulations: How does practicing retrieving
some items from the practiced set affect retrieval of other items from
the practiced set? Figure 40 shows results from Anderson and Bell’s
Experiment 4b. This experiment is especially informative because it
used independent cues at test (e.g., study “actor looking at tulip,”
“actor looking at violin,” “teacher lifting violin”; practice “actor
looking at tu”; test with “teacher lifting v”) and found a significant
RIF effect. Below, we demonstrate that we can replicate this finding
of independent-cue RIF for novel associations in the model. We also
describe important boundary conditions on this effect relating to
settings of the context scale parameter.

Effects of Context Scale

As discussed by M. C. Anderson (2003), the extent to which
participants cue with contextual information at practice can have a
large effect on competitive dynamics and (through this) RIF. The
results of Simulation 2.1 nicely illustrate this point: When context
scale is set to 1.00, hippocampal pop-up occurs only if the item
pops up first in semantic memory. However, when context scale is
set to 1.25, hippocampal traces can pop up on their own, without
pop-up occurring first in the item layer. Put another way, with
context scale set to 1.00, only strong semantic associates are
punished, but with context scale set to 1.25, strong semantic links
are not necessary to trigger pop-up and punishment.

Taken together, these results have strong implications for our
simulations of the M. C. Anderson and Bell (2001) paradigm.
Insofar as competitors are episodically (but not semantically)
related to the retrieval cue in this paradigm, our previous explo-
rations suggest that competitor pop-up (and RIF) should be ob-
served given a context scale of 1.25 but not given a context scale
of 1.00. To test this idea, we ran two sets of simulations: one set
where we used a context scale of 1.00 during practice and test and
another set using a context scale of 1.25 during practice and test.

Method

Figure 41 illustrates the structure of the patterns used in this
simulation. During semantic pretraining, eight different associate-
layer patterns were linked in a one-to-one fashion to eight different
item-layer patterns. At study, the model was given novel pairings of
these pretrained associates and items: The target (1) and competitor
(2) were paired with Associate A, and the target control (3) and
competitor control (4) were paired with Associate B. The competitor
and the competitor control were also paired with other associates (C
and D, respectively) that could be used as independent probes at test.

Note that, with this procedure, four of the associate-layer patterns
used during pretraining (E, F, G, H) did not appear at study, and four
of the item-layer patterns used during pretraining (5, 6, 7, 8) did not
appear at study either. The purpose of pretraining semantic links
between studied items and nonstudied associate patterns (E–1, F–2,
G–3, and H–4) was to mirror the procedure used by M. C. Anderson
and Bell (2001), Experiment 4b, whereby items used at study all came
from different semantic categories; these four pairs were all pretrained
using our standard semantic strength value of .85.31 The purpose of
pretraining semantic links between the episodic cues used at study and
nonstudied item patterns (A–5, B–6, C–7, and D–8) was to capture
the commonsense idea that episodic cues used in experiments like
Anderson and Bell’s have a semantic history (i.e., they are linked to
at least one other item in semantic memory). These four pairs were
pretrained using a semantic strength value of .95.32

During the practice phase, we probed for the target three times
using our standard partial-practice cue (Associate A plus three item
units). For comparison purposes, we also included an extra-study
practice condition. During the test phase, we used our standard
associate-plus-two-item-unit cues to probe recall for studied patterns.

Results

Figure 42 shows the effects of partial practice on independent-
cue competitor recall as a function of context scale. When context
scale is set to 1.00, the model does not show any RIF for inde-
pendent cues, but the model does show a robust RIF effect

31 We also ran a version of the simulation where semantic strength
values for these pairs were sampled from a uniform distribution with a
mean of .85 and half-range of .15. The results of that simulation qualita-
tively match the results presented here.

32 Semantic associates of episodic cues play an important role in net-
work dynamics. In the model, if the episodic cue used at practice (Cue A)
is not strongly linked to any items in semantic memory, all of the units in
the item layer tend to pop up at once during the low-inhibition phase,
because there is no input from the associate layer to tip the balance in favor
of one attractor or the other. Pretraining a semantic link between Cue A and
Item 5 helps to break the tie between item-layer units (such that the initial
wave of activation during the low-inhibition phase consists of Item 5
becoming active instead of all of the item-layer units becoming active).
Note that this pop-up of Item 5 causes weakening of the A–5 memory.
Using a higher-than-usual semantic strength value (.95) for associations
like A–5 helps to ensure that the A–5 association stays strong enough to
influence model dynamics on later practice trials, even if this association
undergoes some weakening on earlier practice trials.
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Figure 40. Data from M. C. Anderson and Bell (2001, Experiment 4b)
showing retrieval-induced forgetting effects driven by novel episodic as-
sociations. This study used verbal materials (sentences like “The actor is
looking at the tulip”) and independent cues at test.
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when context scale is set to 1.25. The results for dependent cues
(not shown here) are the same as the results for independent cues:
RIF is present when context scale is set to 1.25 but not when
context scale is set to 1.00. Finally, the results of the extra-study
simulations (not shown here) are consistent with all of our previ-
ous extra-study simulations—no forgetting effect is observed for
extra study regardless of context scale.

Overall, these results are consistent with our expectation that
higher context scale values are needed to trigger episodically
mediated RIF. The finding that RIF occurs for both dependent and
independent cues in the model (for context scale set to 1.25) is, in
large part, a consequence of the fact that both the dependent-cue
hippocampal representation (A–2) and the independent-cue hip-
pocampal representation (C–2) tend to pop up during the low-
inhibition phase at practice.

Dynamics

The dynamics of competitor pop-up at practice (given context
scale set to 1.25) are illustrated in Figure 43.33 In our previous
simulations (with semantically related competitors) cortical
competitor pop-up was responsible for triggering hippocampal
competitor pop-up. This simulation shows the opposite pattern:
During partial practice of A–1, the hippocampal representation
of A–2 (the dependent-cue competitor) pops up first; this trig-
gers activation of the cortical representation of the competitor
(2). Once the cortical representation of Item 2 pops up, this
activates the hippocampal representation of C–2 (the
independent-cue competitor). This process, whereby activation
travels from cortex to hippocampus to cortex and then back to
the hippocampus, allows the model to “find” and then weaken
the hippocampal trace of the independent cue, even though the

independent cue (C–2) has zero cortical overlap with the target
(A–1).

Roles of Hippocampal Versus Cortical Weakening

To explore how much of the independent-cue RIF effect is
attributable to weakening of hippocampal versus cortical traces,
we ran the same analysis that we ran in Simulation 1.2, where
we measured RIF with hippocampal versus cortical learning
turned off at practice. The results of this analysis indicate that,
in this simulation, RIF is entirely attributable to hippocampal
weakening: The RIF effect for hippocampal learning only (.11)
is virtually identical to the RIF effect with both hippocampal
and cortical learning enabled, and the RIF effect for cortical
learning only is not significantly different from zero. The fact
that cortical weakening made a small but reliable contribution
to RIF in Simulation 1.2 but not here can be explained in terms
of the idea that semantic associations were contributing to recall
in Simulation 1.2 but not here. The key feature of the current
simulation paradigm is that episodic traces are both necessary
and sufficient for recall: If there is not an intact episodic trace,
the competitor will not be recalled properly regardless of the
strength of the cortical representation. Likewise, if the model
has an intact episodic trace for the competitor, recall will be

33 Note that other items besides the competitor pop up at practice. In
particular, given the cue A–1, Item 5 (which was semantically linked to A
at pretraining) tends to pop up during the low-inhibition phase. Since
pop-up of Item 5 is not directly relevant to explaining cue-independent
forgetting of the competitor, we do not discuss it further.
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successful regardless of whether the competitor’s cortical rep-
resentation has been weakened.34

Higher Context Scale Values

As a final note, we also ran simulations with context scale at
practice and test set to even higher values (1.50 and 1.75). Results
for context scale set to 1.50 are similar to results for context scale
set to 1.25 (pop-up of competitors but no pop-up of control items
at practice). When context scale is raised to 1.75, control items
start to pop up at practice, in addition to competitors. Another way
of framing this point is that, if context scale is set high enough,
merely having been linked to the study context becomes sufficient
to trigger pop-up, even if the item in question has no association
whatsoever with the associate-layer and item-layer features being
used as a practice cue. Pop-up of control items in this condition
leads to forgetting of these items. This result may help to explain
why forgetting of control items has sometimes been observed in
the RIF literature (e.g., Tsukimoto & Kawaguchi, 2001).

Discussion

When comparing the results of this simulation with the results of
Simulation 2.1, we see an interesting pattern:

● To simulate the finding of null RIF for semantically weak
competitors (e.g., M. C. Anderson et al., 1994), context scale
must be set to 1.00 (not 1.25) at practice. This parameter
setting ensures that episodic links are not sufficient to trigger
competitor pop-up.

● To simulate the finding of RIF for novel associates of the
practice cue (e.g., M. C. Anderson & Bell, 2001), context
scale must be set to 1.25 (not 1.00). This parameter setting

ensures that episodic links between the practice cue and the
competitor are sufficient to trigger competitor pop-up.

Given that different context scale settings are needed to simulate
these findings, this raises the question of why participants would
cue more strongly with context in M. C. Anderson and Bell (2001)
compared with M. C. Anderson et al. (1994). One possible explana-
tion is that participants modulate their (episodic) context scale value
on the basis of the contribution of semantic memory: Intuitively,
episodic cuing is less important on tests where participants can fall
back on semantic memory versus on tests where participants are
forced to rely entirely on episodic memory. According to this view,
participants may have used a lower context scale value in the Ander-
son et al. Fruit–Apple paradigm than in the Anderson and Bell novel
sentences paradigm because they could draw upon semantic memory
in the former case but not the latter. We describe a way of testing these
ideas about context scale and RIF in the next section.

Boundary Conditions

The results of our context scale manipulations in Simulations
2.1 and 4 suggest that RIF for weak semantic associates and novel

34 This latter claim depends on our use of a small cortical learning rate.
With our standard cortical learning rate (.05), cortical learning at practice
can incrementally weaken the cortical representation of the competitor, but
these changes are too small to damage the overall viability of the repre-
sentation (i.e., even after weakening, the competitor still exists as an
attractor state in the cortical network). If we use a much larger cortical
learning rate (.20), cortical pop-up at practice can catastrophically damage
the cortical representation of the competitor, such that recall is impaired
even in the presence of an intact episodic trace.
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Figure 42. Simulation: independent-cue retrieval-induced forgetting
(RIF) effects, when the practiced and control categories are defined by
episodic associations. The left-hand bars show RIF when context scale
(during partial practice and test) is set to its default value (1.00), and the
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episodic associates should be very sensitive to how strongly par-
ticipants cue with context at practice. Specifically,

● Increasing contextual cuing in RIF paradigms that use seman-
tically related category–exemplar pairs (e.g., M. C. Anderson et
al., 1994) should result in RIF occurring for both strong category
exemplars and weak category exemplars (see Figure 28).

● Reducing contextual cuing in RIF paradigms that use novel
episodic associates (e.g., M. C. Anderson & Bell, 2001)
should eliminate RIF for these items (see Figure 42).

One way to address these questions would be to use a hybrid
episodic–semantic paradigm where a given cue (Fruit) is paired at
study with some semantically related items (Apple, Pear, Kiwi) as
well as some unrelated items (Shark, Helicopter, Eraser). To
manipulate the extent to which participants cue with context at
practice, one could manipulate (at practice) whether the practiced
items are all semantically related to the cue (e.g., Fruit–Pear) or
whether they are all semantically unrelated to the cue (e.g., Fruit–
Shark). If all of the practiced items are semantically related to the
retrieval cue, we expect that participants will use a relatively low
context scale value at practice (akin to context scale set to 1.00 in
our simulations). In this condition, as per the results of Simulations
2.1 and 4 (context scale set to 1.00), we expect RIF to be present
for strong semantic competitors (Fruit–Apple) but not for weak
semantic competitors (Fruit–Kiwi) or semantically unrelated com-
petitors (Fruit–Shark). Conversely, if all of the practiced items are
semantically unrelated to the retrieval cue (thereby forcing partic-
ipants to rely entirely on episodic memory), we expect that par-
ticipants will use a relatively high context scale value (akin to
context scale set to 1.25 in our simulations). In this condition, as
per the results of Simulations 2.1 and 4 (context scale set to 1.25),
we expect RIF to be present for all three types of studied compet-
itors: strong semantic competitors, weak semantic competitors,
and semantically unrelated competitors.

Simulation 5: Effects of Context Change on Independent-
Cue RIF

Background

As discussed above, Anderson has argued that RIF is cue
independent, meaning that subsequent retrieval of competitors is
impaired no matter what cue is used at test. Extant studies provide
clear proof that RIF can be observed given independent cues that
are unrelated to practiced items (see Simulations 1.2 and 4).
However, at this point, it is unclear whether RIF extends to all
independent cues or whether RIF is limited to specific subtypes of
independent cues.

Recently, Perfect et al. (2004) challenged Anderson’s notion of
cue independence, by showing that some types of independent
cues are (apparently) insensitive to RIF. Specifically, Perfect et al.
(Experiment 3) modified the standard Fruit–Apple RIF procedure
by including a novel associate study phase, where each category
exemplar was paired with a unique, semantically unrelated word
cue (e.g., Zinc–Apple). Following this phase, participants were
given a standard study phase where they studied category–
exemplar pairs (Fruit–Pear, Fruit–Apple). Next, participants were

given partial practice using category-plus-fragment cues (e.g., cue
for Fruit–Pear using Fruit–_e_r). Finally, at test, Perfect et al.
compared recall using two different types of cues:

● Category-plus-fragment cues (e.g., test for Apple using
Fruit–__p__)—we call this the standard cue condition; and

● Cues from the novel associate study phase (e.g., test for
Apple using Zinc–)—we call this the external cue condition.

Note that the first type of cue is a dependent cue. The second
type of cue is an independent cue because Zinc is unrelated to
practiced stimulus pairs (e.g., Fruit–Pear).

Perfect et al. (2004) found RIF using standard category-plus-
fragment cues but failed to find any RIF when they tested using
external cues from the novel associate study phase (Zinc). Figure
44 shows the results from Perfect et al.’s Experiment 3. The goal
of this simulation is to explore why Perfect et al. did not obtain an
RIF effect when they used cues from the novel associate study
phase. Given that (as discussed above) other studies have found
RIF with independent cues, the use of independent cues per se
cannot have been the cause of their failure to obtain an RIF effect.
Furthermore, since other studies have found RIF using novel
associates as cues (see Simulation 4 above), the use of novel
associates as cues per se cannot be used to explain the null RIF
effect either.

Having accounted for these factors, there is one highly salient
difference between the Perfect et al. (2004) experiment and other
studies that succeeded in finding RIF effects with novel associate
cues: In the studies that found RIF effects, the novel association
was learned during the main study phase, whereas in Perfect et
al.’s Experiment 3, the novel association was learned outside of the
main study phase. Thus, one of the main goals of this simulation
is to address the role of contextual information in modulating RIF.
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Figure 44. Data from Perfect et al. (2004, Experiment 3): retrieval-
induced forgetting (RIF) as a function of test cue type. At test, memory for
the competitor was probed with a standard dependent cue (category plus
word fragment) or an external cue (a semantically unrelated word that was
episodically linked to the competitor before the start of the standard study
phase). RIF was present in the standard cue condition but not in the
external cue condition. Data were taken from the analysis shown in Perfect
et al.’s Table 4, where participants were selected to ensure matched recall
of control items. Error bars indicate the standard error of the mean.
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Below, we show that—in keeping with the Perfect et al. (2004)
data—the model shows RIF for standard cues but no RIF for
external cues. At a high level, our explanation for the null external
cue RIF effect is as follows. Consider the competitor word Apple:

● During the novel associate study phase, participants form
an episodic trace linking Zinc, Apple, and a “novel associate
context” tag.

● During the standard study phase, participants form an epi-
sodic trace linking Fruit, Apple, and a “standard study con-
text” tag.

● At practice, participants are given a cue like Fruit–_e_r (if
Pear is a target). Also, they are explicitly asked to think back
to the standard study phase, which should lead to reinstate-
ment of the standard study context tag. When inhibition is
lowered at practice, Apple pops up in cortex as a semantic
competitor. The combination of Fruit, Apple, and the standard
study context being active is an excellent match to the
“Fruit � Apple � standard study context” episodic trace and
a relatively poor match to the “Zinc � Apple � novel
associate context” episodic trace. As such, the Fruit–Apple
episodic trace tends to pop up strongly in the hippocampus,
but the Zinc–Apple trace does not. Because the Zinc–Apple
episodic trace does not pop up as a competitor, it is not
punished.

● At test, when participants are cued with Zinc and asked to
think back to the novel associate study phase (i.e., to reinstate
the novel associate context tag), they can use their fully intact
Zinc–Apple episodic trace to retrieve the missing associate
(Apple).

In summary, this paradigm resembles Simulation 1.2 insofar as
semantically categorized items are used at study, and it resembles
Simulation 4 insofar as the independent cue is a novel episodic
associate. The main difference is that, here, the independent cue is
studied outside of the standard study phase. At practice, when
participants cue with the standard study context tag, the
independent-cue hippocampal trace is at a competitive disadvan-
tage, relative to traces of items that were presented during the
standard study phase. Thus, the independent-cue hippocampal
trace does not pop up (and is not punished).

This account of the Perfect et al. (2004) findings relies on the
assumption that, during the practice phase, participants can men-
tally target memories from the most recent list (the standard study
list) and screen out memories from the preceding list (the novel
associate study list). While there are clearly limits on participants’
ability to mentally target particular list contexts (see, e.g., Dennis
& Humphreys, 2001), selectively recalling from the most recent
list appears to be an especially feasible form of contextual target-
ing. In support of this claim, several studies have found that
prior-list intrusion rates are very low when participants try to recall
from the most recent list (see, e.g., Davis, Geller, Rizzuto, &
Kahana, in press; Kahana, Dolan, Sauder, & Wingfield, 2005;
Shimamura, Jurica, Mangels, Gershberg, & Knight, 1995; for
theoretical discussion of mechanisms of contextual targeting, see
Howard & Kahana, 2002).

Method

Figure 45 illustrates the structure of the patterns that we used in
Simulation 5. In this simulation, we semantically pretrained two
categories (A and B) with two items apiece (using a semantic
strength of .85).35 In addition to pretraining these two categories,
we also semantically pretrained two additional associate-layer
patterns (C and D). These associate-layer patterns were used as
external associates (analogous to Zinc) during the novel associate
study phase described below.36

For this simulation, the study phase was broken into two parts:

● First, the model was given a novel associate study phase in
which it studied novel pairings of semantically unrelated
items (analogous to Zinc–Apple): Associate C was paired
with the competitor item (2), and Associate D was paired with
the competitor control item (4). A fixed “novel associate
context” pattern was active in the context layer during this
phase.

● Next, the model was given a standard study phase in which
it studied semantically related category–item pairs: A–1, A–2,
B–3, and B–4. A “standard study context” pattern (com-
pletely distinct from the novel associate context pattern) was
active in the context layer during this phase.37

The practice phase followed our standard partial-practice pro-
cedure (with semantic-category-plus-three-unit cues). The stan-
dard study context pattern was presented to the context layer
during this phase (since participants were asked in the experiment
to think back to the study phase). As in Simulations 1.2 and 4, the
model was given three trials of partial practice with the target
(A–1). Context scale was set to 1.00 at practice (since recall on this
test can be supported by both semantic and episodic memory).

Finally, the model was given two tests:

● First, we tested recall for the A–1, A–2, B–3, and B–4
pairings using our standard test cues (four out of four
associate-layer units, two out of four item-layer units). Con-
text scale was set to 1.00 (because both episodic and semantic
memory can contribute to recall on this test), and the standard
study context pattern was presented to the context layer.

35 We also ran a variant of this simulation where semantic strength
values were sampled from a uniform distribution with a mean of .85 and
half-range of .15. The results of this simulation qualitatively match the
results reported here.

36 As per the procedure used in Simulation 4, the two external associate
patterns (C and D) were each paired during semantic pretraining with items
(5 and 6, respectively) that did not appear elsewhere in the simulation. We
included Items 5 and 6 at pretraining to simulate the fact that external
associates like Zinc have strong semantic links to other, nonstudied items
(e.g., Tungsten). The C–5 and D–6 pairings both used a semantic strength
of .95 (but note that a strength of .85 yields qualitatively identical results).

37 We do not want to make a strong claim that, in real life, the standard
study context and the novel associate context are completely nonoverlap-
ping. Rather, we used nonoverlapping context tags because this was the
simplest possible way of instantiating the idea (discussed earlier) that
participants can mentally target the standard study context at practice.
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● Second, we tested recall of the competitor and the competitor
control using external associates. For this test, the novel associ-
ate context pattern was presented to the context layer (since
participants were instructed to think back to the novel associate
study phase). In keeping with the procedure used by Perfect et al.
(2004), we cued with the associate on its own (Zinc–). Also, in
keeping with the principles for context scale setting outlined in
Simulation 4, we set context scale to 1.25 for this test (insofar as
this is a pure test of episodic memory—semantic memory cannot
be used to support performance).38

Results and Discussion

The results of the simulation are shown in Figure 46: In keeping
with the results of Perfect et al. (2004), robust RIF is present for
the standard cue condition but not the external cue condition.39

These results are consistent with the claim made by Perfect et al.
that different cues can elicit different degrees of RIF. Specifically,
our simulation results match the Perfect et al. finding that external
cues from the novel associate study phase do not yield RIF, even
in situations where more standard types of cues yield robust RIF
effects. The model’s explanation for this finding is that hippocam-
pal traces corresponding to external associations do not activate at
practice because they do not match the contextual cue that is active
at practice. Since these hippocampal traces do not activate, they
are not punished, so they retain their efficacy in supporting recall
at test. We ran additional analyses of network dynamics during the
first practice trial to confirm this explanation of the model’s
behavior. As expected, the cortical representation of the compet-
itor shows robust pop-up during the low-inhibition phase (peak
activation � .59 on average, SEM � .01). Crucially, while the

hippocampal representation of the standard cue–competitor pair
(A–2) also shows robust pop-up (peak activation � .60, SEM �
.01), the hippocampal representation of the external cue–
competitor pair (C–2) does not pop up at all (peak activation �
.00, SEM � .00).

These results match our finding from Simulation 4 that cortical
pop-up (on its own) is not sufficient to cause forgetting on tests of
memory for novel associations—success or failure on these tests is
entirely a function of whether the episodic memory trace is intact.
A useful way of summarizing the results of Simulations 1.2, 4, and
5 is that the effect of cortical weakening on recall is an (increasing)
function of how much the model is relying on semantic (vs.
episodic) memory at test: When semantic memory and episodic
memory are both contributing (as in Simulation 1.2), the effect of
cortical weakening will be small (but nonzero). When semantic
memory is making no contribution, the effect of cortical weaken-

38 The same pattern of results is obtained when context scale is set to
1.00.

39 In this simulation, overall levels of recall are higher for standard cues
than external cues because the model can fall back on semantic recall for
standard cues but not for external cues. Recall in the external cue condition
closely tracks the probability of successful episodic encoding (which
defaults to 50% in our model). To better match recall in the standard versus
external cue conditions, we ran additional simulations where we increased
the encoding success rate for external associations from 50% all the way up
to 100%. This manipulation boosts the overall level of recall for external
cues (so it is similar to the level of recall for standard cues), but the overall
pattern of RIF effects is unchanged—the RIF effect for external cues is
close to zero in all of these simulations.
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929A NEURAL NETWORK MODEL OF RIF



ing will be null. This view suggests that the most sensitive way to
measure cortical weakening effects would be to set up a paradigm
where participants do not episodically encode the to-be-retrieved
item at all (so there is no episodic trace to get in the way, and
participants are forced to rely entirely on semantic memory). This
point is addressed in more detail in Simulation 6.

We should also point out that other factors might contribute to
the null external cue RIF effect besides the contextual factors
outlined above. For example, it is possible that participants encode
Apple using different semantic features in the presence of Zinc
versus the presence of Fruit (M. C. Anderson, personal commu-
nication, April 1, 2006; see also the discussion of transfer-
inappropriate testing effects in M. C. Anderson, 2003). At a high
level, this idea has a lot in common with the explanation that we
have provided above. In our account and Anderson’s account, the
pattern of neural activity is different when participants study
Zinc–Apple versus when Apple pops up as a semantic competitor
at practice. Our account posits that different contextual tags are
active, whereas the Anderson account posits that different Apple
features are active. In both cases, the difference (be it contextual or
semantic) creates a mismatch between features that are active at
practice and features that were encoded during the novel associate
study phase, and this difference prevents the Zinc–Apple episodic
trace from being damaged at practice. These two accounts are not
mutually exclusive, although it should be possible to tease them
apart experimentally (see discussion below).

Boundary Conditions

We have argued that the key factor driving the null RIF effect in
Perfect et al. (2004) is that the Zinc � Apple � novel associate
context episodic trace is a poor match for the retrieval cues that
were present at practice. As such, the Zinc–Apple trace does not

pop up as a competitor at practice, and (consequently) it is not
punished.

One prediction that comes out of this view is that, if the external
associate is studied in the same context as the standard associate
(i.e., Zinc–Apple and Fruit–Apple are studied as part of the same
study list), this will remove the contextual mismatch factor that
was preventing retrieval of Zinc–Apple at practice—when partic-
ipants cue with the study-phase context, it will now be pulling in
the Zinc–Apple trace instead of blocking it out. As a result,
Zinc–Apple pop-up should increase, leading to external cue RIF.40

This prediction differentiates our context-centered view from
the view that different Apple features are active for Zinc–Apple
versus Fruit–Apple. According to the latter view, the null RIF
effect should persist even when Zinc–Apple and Fruit–Apple are
studied in the same context (insofar as there will still be semantic
feature mismatch between the Apple representation that pops up in
response to Fruit–_e_r at practice and the Apple representation that
was active when studying Zinc–Apple; this mismatch should pre-
vent pop-up of the Zinc–Apple trace and thus prevent RIF).

To test the viability of our prediction that removing contextual
mismatch will boost Zinc–Apple RIF, we ran a simulation that was
identical to our previous simulation of Perfect et al. (2004), except
that the same context tag was used throughout the simulation. The
results of this simulation are shown in Figure 47. In keeping with
our expectations, there is a large RIF effect for external associates
(as well as for standard associates) when the context tag is held
constant. This RIF effect is driven by the fact that Zinc–Apple now
shows robust pop-up during the low-inhibition phase (peak acti-
vation � .19, SEM � .01).

Simulation 6: RIF in Semantic Memory

Background

In most RIF studies, participants are explicitly asked to retrieve
studied items on the final test; all of the paradigms that we have
simulated up to this point fall into this category. In this simulation,
we address the finding that RIF can also be observed on semantic
generation tests (Carter, 2004; Johnson & Anderson, 2004).

Experiment 2 from Carter (2004) provides a clear illustration of
semantic RIF. The paradigm used in this study was briefly de-
scribed in the introduction and is summarized in Figure 48. Carter
used words like Clinic that have multiple strong associates (e.g.,
Sick and Doctor). Participants studied one of these associate pairs
(Clinic–Sick) but not the other (Clinic–Doctor). At practice, par-
ticipants were asked to retrieve Sick, using Clinic–Si as a cue.
During this retrieval attempt, nonstudied associates of Clinic (Doc-
tor) compete with recall of the studied associate. At test, memory
for Doctor was probed by giving participants the independent cue
Lawyer (which, like Clinic, is semantically linked to Doctor) and
asking them to generate a semantic associate.

40 It is worth noting that the Perfect et al. (2004) article also included
experiments where the external cue was presented during the main study
phase (Experiments 1 and 2) and that these studies still failed to find RIF
for the external cue. However, crucially, these studies used faces as the
external cues and words as the retrieval targets. Given that participants
were trying to retrieve words (but not faces) at practice, it is unlikely that
the face episodic traces would have activated at practice, thus their efficacy
as retrieval cues should have been relatively preserved.
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Figure 46. Simulation of Perfect et al. (2004, Experiment 3): retrieval-
induced forgetting (RIF) as a function of test cue type. Memory was tested
using a standard dependent cue or with an external cue (i.e., a semantically
unrelated item that was paired with the competitor during the novel
associate study phase). RIF is observed in the model (after partial practice)
in the standard cue condition but not in the external cue condition. Error
bars indicate the standard error of the mean.
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Figure 49 shows the data from Carter (2004), Experiment 2.
There was a clear RIF effect: Practicing retrieval of one semantic
associate of Clinic (Sick) led to forgetting of other, nonstudied
semantic associates of Clinic (e.g., Doctor). We set out to simulate
this finding of robust semantic RIF here.

Method

Figure 50 illustrates the structure of the patterns used in this
simulation. We used the same semantic pretraining structure that

we used in Simulation 1.2 (our previous simulation using seman-
tically related independent cues). The key property of this structure
is that the competitor item (2) is semantically linked with two
separate associates (A and C). This mirrors the property of the
Carter (2004) experiment whereby Doctor (the competitor) is an
associate of both Clinic and Lawyer. All items were semantically
pretrained with a mean strength of .85.

The target (A–1) and target control (B–4) were presented at
study; in keeping with Carter (2004), the model was never given a
chance to study the competitor. During the practice phase, the
model was given three trials of partial practice for the target
pattern (A–1).

At test, we probed for recall of the competitor and the compet-
itor control using associate-only cues (i.e., no item-layer units were
cued). Associate C was used to probe for the competitor, and
Associate D was used to probe for the competitor control. These
are independent cues insofar as C and D are unrelated to stimuli
that were presented at practice. Our use of associate-only cues at
test mirrored Carter (2004)’s use of single-word test cues (like
Lawyer). Context scale was set to zero at test to reflect the fact that
participants were doing semantic generation (not episodic re-
trieval).

In the absence of any practice, the model is roughly equally
likely to recall the two items (2 and 3) that were paired with
Associate C during semantic pretraining. The same is true for the
control items (the model is equally likely to recall the two items,
5 and 6, that were paired with Associate D during semantic
pretraining). The key question is whether cortical pop-up of the
competitor (2) during practice will weaken its semantic represen-
tation enough to tip the balance away from the competitor, toward
the other item (3) associated with Cue C.

One parameter that is important in this simulation is the vari-
ability (across items) of semantic strength values assigned at
pretraining. If item strength variance is set to 0.00 (i.e., all items
have weights set to .85 exactly), this constitutes a best-case sce-
nario for detecting subtle changes to cortical weights. In this
situation, the model is poised on a knife-edge where Items 2 and
3 are precisely balanced in association strength (given Cue C) at
the outset of the experiment, and any weakening of Item 2’s
weights will cause the model to favor Item 3 at test. Adding item
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Figure 47. Simulation: retrieval-induced forgetting (RIF) as a function of
test cue type, when the same context tag is used throughout the simulation.
In this situation (where Zinc–Apple and Fruit–Apple are studied in the
same context), a robust RIF effect is present for both standard and external
cues. Error bars indicate the standard error of the mean.
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Figure 48. Illustration of the stimuli used by Carter (2004, Experiment
2). Gray bars indicate preexisting semantic relationships, and black
lines indicate pairings that appear at study. The key question addressed
by the Carter study was whether practicing retrieval of studied pairs like
Clinic–Sick will impair recall of nonstudied associates of Clinic (e.g.,
Doctor), when recall is tested using a nonstudied independent cue
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Figure 49. Data from Carter (2004, Experiment 2), showing retrieval-
induced forgetting of semantic memories. Practicing retrieval of studied
pairs (e.g., Clinic–Sick) impaired subsequent recall of nonstudied semantic
associates (e.g., Doctor) when memory was tested using a semantic gen-
eration test (e.g., “Generate a semantic associate of Lawyer”).
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strength variance to the model should reduce the size of the RIF
effect: On some trials, the competitor might start out weaker than the
other associate (in which case, it will not be recalled before or after
practice); on other trials, the competitor might start out substantially
stronger than the other associate, such that (even after weakening) it
will still be stronger and thus will not be forgotten. To explore the
robustness of the RIF effect in this simulation, we decided to run some
simulations with item strength variance of 0.00 and some simulations
with item strength variance of .05.41

Results and Discussion

Figure 51 shows the results of our simulation. In keeping with
the results of Carter (2004), robust RIF is present after partial
practice. This RIF effect occurs because the competitor pops up in
semantic memory at practice. This incrementally weakens the
cortical representation of the competitor and makes it less likely
that the competitor will be generated in response to an independent
semantic cue at test.42

As expected, the size of the partial-practice RIF effect is mod-
ulated by the amount of item strength variance built into the model.
When all items start out matched in strength (i.e., no item strength
variance), tweaking the competitor reliably tips the balance of
recall away from the competitor and causes a massive RIF effect.
Adding .05 noise to the item strength values reduces RIF. How-
ever, even with .05 noise, the RIF effect is still highly reliable.

The main contribution of this simulation is to illustrate how
relatively subtle cortical weakening effects can have a large effect
on behavioral recall performance. Taken together with the results
of Simulation 1.2, the results of this simulation also show how the
effects of cortical weakening on recall are modulated by the
structure of the final recall test. In Simulation 1.2, we showed that

cortical weakening has a relatively minor effect on recall perfor-
mance when the model can rely on both episodic and semantic
memory at test. The results of the present simulation show that,
when we force the model to rely entirely on semantic memory at
test (by setting context scale to zero and by testing recall of
nonstudied competitors), the same level of cortical weakening has
a much larger effect on recall performance.

Simulation 7: Extra Study Can Cause Forgetting Given
High Pattern Overlap

Background

As discussed above, several experiments have found that extra
study (during the practice phase) does not cause forgetting of
competitors on cued-recall tests (e.g., M. C. Anderson, Bjork, &

41 Item strength variance of .05 may seem like a small number given
that—according to the Nelson, McEvoy, and Schreiber (2004) norms—
free-association probability values for the stimuli used by Carter (2004)
can vary by much more than 5%. For example, given the cue Clinic, the
probability of free-associating to Doctor is .30, and the probability of
free-associating to Sick is .12. However, it is important to keep in mind that
item strength variance applies to the underlying weights and that the
relationship between weights and recall behavior in the model is highly
nonlinear: Given item strength variance of .05, the probability of free-
associating to a given item in the model can vary all the way from 0% to
100%.

42 In keeping with the idea that RIF is driven by cortical weakening in
this simulation, follow-up simulations showed that turning off cortical
learning at practice completely eliminates RIF, whereas turning off hip-
pocampal learning at practice has no effect on RIF.
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Figure 50. Illustration of the structure of the patterns used in Simulation 6. Gray bars indicate pairings that
were pretrained into semantic memory, black lines indicate pairings that were presented at study, and numbers
below the item-layer circles indicate the mean strength of that pattern in semantic memory. The patterns used
during semantic pretraining in this simulation were identical the patterns used in Simulation 1.2 (our previous
simulation using semantically related independent cues). A key difference between this simulation and Simu-
lation 1.2 is that—in this simulation—only the target (and target control) were presented at study; the model was
never given a chance to study the competitor.
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Bjork, 2000; Bäuml, 1996, 1997, 2002; Blaxton & Neely, 1983;
Ciranni & Shimamura, 1999; Shivde & Anderson, 2001). How-
ever, contrary to these findings, some experiments have found that
extra study of some list items does impair cued recall of other list
items. For example, Ratcliff, Clark, and Shiffrin (1990, Experi-
ment 6) found that extra study of some pairs of unrelated words
impaired cued recall of other pairs of unrelated words; for a similar
result, see Kahana, Rizzuto, and Schneider (2005).

Other relevant evidence comes from Norman (2002), who found
that extra study of some items impaired recognition sensitivity for
other items on a plurality recognition test; this test required par-
ticipants to remember whether they studied words in singular or
plural form (Hintzman, Curran, & Oppy, 1992). Also, Verde and
Rotello (2004) found that extra study of some items impaired
recognition sensitivity for other items on an associative recogni-
tion test. Both plurality recognition and associative recognition
load very heavily on retrieval of specific details (e.g., Curran,
2000; Hintzman & Curran, 1994; Hockley, 1999; Yonelinas,
1997). Thus, the fact that extra study led to forgetting on plurality
and associative recognition tests suggests that extra study can
impair cued recall. Finally, M. C. Anderson and Bell’s (2001)
Experiment 5 used the sentence stimuli described in Simulation 4
(“The actor is looking at the tulip”) and found that extra study
caused forgetting of competitors (see also Shivde & Anderson,
2001).

It is possible that some of these findings might be attributable to
experimental confounds or other strategic factors. For example,
Bäuml (1997) argued that the Ratcliff et al. (1990) cued-recall
forgetting effect might be attributable to output-order confounds.
Also, Kahana, Rizzuto, and Schneider (2005) pointed out that their
experiment did not control for study-test lag. Finally, M. C. Ander-

son and Bell (2001) argued that the extra-study forgetting effect
that they observed might have been attributable to participants
covertly enacting retrieval practice during the extra-study phase.
When participants’ results were binned according to their self-
reported use of a covert retrieval strategy, participants who re-
ported using covert retrieval during the extra-study phase showed
a significant forgetting effect, and participants who did not report
using covert retrieval showed a smaller, nonsignificant forgetting
effect.

All of the above points indicate that it is appropriate to be
skeptical of findings of forgetting after extra study. Nonetheless,
some of the studies reviewed above (in particular, the Norman,
2002, study and the Verde & Rotello, 2004, study) were free of
obvious confounds and used demanding encoding tasks that should
have minimized participants’ ability to covertly rehearse during
extra-study trials. Thus, it seems to be worth exploring (using the
model) whether there are boundary conditions on the null extra-
study interference effect for cued recall. In particular, we decided
to focus on the issue of pattern overlap: How many features (on
average) do participants’ representations of studied items have in
common with one another? One of the most salient features of the
Norman (2002) and Verde and Rotello (2004) studies mentioned
above is that both studies intentionally used stimulus–encoding
task combinations that were designed to create highly overlapping
traces: Norman asked participants to try to picture whether each
object could fit inside a small box (so participants ended up
picturing the box on almost every trial). Verde and Rotello gave
participants unrelated word pairs and asked participants to form
integrative images; crucially, individual words appeared in more
than one pair, so (for example) if two studied pairs were Ostrich–
Umbrella and Ostrich–Computer, participants would end up pic-
turing an ostrich on both trials. The M. C. Anderson and Bell
(2001) study also asked participants to form images and rate them
for vividness. Overall, these results suggest that having partici-
pants form representations that overlap strongly across stimuli
might be important for triggering forgetting.

In the simulations reported below, we varied overlap by varying
the number of cortical (item-layer) units shared by stimuli in the
experiment. Also, Norman and O’Reilly (2003) discussed how the
ability of the hippocampus to assign distinct conjunctive codes to
overlapping stimuli can break down under conditions of high
cortical overlap. Thus, in addition to manipulating cortical pattern
overlap, we also manipulated the degree of overlap between hip-
pocampal traces.

Method

The methods for this simulation were the same as the methods
that we used in Simulation 1.1 (see Figure 9), except for the fact
that we manipulated the level of cortical and hippocampal overlap
within a given stimulus category. Specifically, the level of overlap
within a category was manipulated in the cortical item layer and
the hippocampal layer. As in previous simulations, the level of
overlap between same-category items in the associate layer was
100%. We included the following overlap conditions:

● 0% item-layer overlap, 0% hippocampal overlap (this
matched our previous simulations);
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● 25% item-layer overlap (one out of four units), 0% hip-
pocampal overlap;

● 50% cortical overlap (two out of four units), 0% hippocam-
pal overlap;

● 50% cortical overlap, 25% hippocampal overlap (one out of
four units); and

● 50% cortical overlap, 50% hippocampal overlap (two out of
four units).

Another small difference between these simulations and Simu-
lation 1.1 is that we used three out of four item units to cue recall
at test (instead of two out of four units). The third unit ensured that
each pattern in the 50%-overlap condition would be cued with at
least one unit that was unique to that pattern.

For these simulations, we looked only at the effects of extra
study at practice (i.e., we did not run partial-practice or reversed-
practice simulations). Also, we took the opportunity to add another
condition (crossed with the overlap manipulation) where we used
a context scale of 1.00 during the study phase and during extra-
study practice trials (instead of our usual study context scale value
of 0.00). Previously (in Simulation 1.1), we showed that increasing
context scale at study does not have a large effect on performance
given low overlap. Here, we show that increasing context scale has
a very large effect given higher levels of pattern overlap.

Results and Discussion

Figure 52 shows the effects of extra study on competitor recall
as a function of cortical and hippocampal pattern overlap. The
left-hand graph in the figure shows results when context scale at
study—and during extra-study practice trials—was set to our de-
fault value of 0.00. The right-hand graph in the figure shows
results when context scale at study—and during extra-study prac-
tice trials—was set to 1.00 (the same value that we normally use
for partial-practice and test trials).

The simulation results show that, when context scale is set to
zero, the null extra-study forgetting effect is reasonably robust to
cortical overlap. Forgetting effects are either null (for 25% cortical
overlap) or modest (for 50% cortical overlap and for 0% or 25%
hippocampal overlap) until we reach 50% cortical overlap and
50% hippocampal overlap, at which point we see catastrophic
forgetting. When context scale is set to 1.00, the results are very
different: There is a small but significant forgetting effect with
25% overlap, and increasing overlap beyond this point leads to
catastrophic forgetting.43

The extra-study forgetting effects observed in this simulation
are driven by hippocampal pop-up of competitors. In the 0%
overlap condition, there is an enormous gap in the level of exci-
tatory input received by target versus competitor representations
on extra-study trials; given the large size of this gap in excitatory
input, there is no competitor pop-up (and no RIF) in this condition.
Increasing target–competitor overlap boosts the level of excitatory
input that the competitor receives when the target is active. Once
the level of support for the hippocampal competitor representation
is sufficiently high, this representation starts to pop up when
inhibition is lowered, which (in turn) leads to forgetting of the
competitor. Using a context scale of 1.00 on extra-study trials

boosts competitor pop-up even further by providing additional
excitatory input to the hippocampal representations of previously
studied items (including competitor items).

There are several important conclusions to be gleaned from this
simulation:

● For our default parameters (i.e., context scale � 0.00 at
study), the null extra-study forgetting effect is robust to the
presence of some cortical overlap between patterns. This is
important insofar as, in real experiments, it is likely that there
will be overlap between patterns of cortical activity elicited
by different items.

● If overlap is high enough and especially if there is a high
level of overlap in the hippocampus (indicating that the level
of cortical overlap is overwhelming the hippocampus’s ability
to keep patterns separate), the model predicts that forgetting
effects will start to emerge in the extra-study condition. This
is consistent with findings—for example, from Norman
(2002)—indicating that extra study can cause forgetting in
situations where participants are encouraged to encode stim-
uli in a rich, highly overlapping fashion.

● The results from the condition where context scale was 1.00
illustrate the benefits of using a context scale value lower than
1.00 on study trials (instead of keeping it at 1.00 throughout
all of the phases of the simulation). When context scale is set
to 1.00 at study, we observe unrealistically high levels of
interference: A significant forgetting effect is observed even
for relatively modest levels of overlap (25% in cortex), and
higher levels of overlap lead to catastrophic forgetting.

We should emphasize that our explanation of forgetting after
extra study (i.e., that it is driven by high representational overlap)
is not mutually exclusive with the covert retrieval practice expla-
nation set forth by M. C. Anderson and Bell (2001). The main
contribution of our simulation is to specify conditions where extra
study might lead to forgetting, even if participants do not deliber-
ately try to rehearse items from the study phase. One way to get at
the image overlap idea in a more controlled fashion would be to
run a variant of Anderson and Bell where one presents pictures to
go along with the sentences (e.g., one could show a picture of a
teacher lifting a violin) and then varies the similarity of the
pictures.

Finally, we should note that some studies using a standard RIF
paradigm have manipulated target–competitor similarity; all of
these studies have found that increasing target–competitor simi-
larity reduces RIF (e.g., M. C. Anderson, Green, & McCulloch,
2000; Bäuml & Hartinger, 2002). Importantly, these studies all
used a partial-practice procedure, whereas our pattern-overlap
simulations (described above) used an extra-study procedure. In
the General Discussion, we revisit this issue and discuss how

43 We also ran simulations with context scale set to 0.50. In this condi-
tion, as in the condition with context scale set to 0.00, the model shows a
null forgetting effect for 25% cortical overlap. This result demonstrates that
the null extra-study forgetting effect is robust to the simultaneous presence
of some item-layer overlap and some contextual cuing at study.
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increasing similarity can have different effects depending on
whether the practice phase uses partial practice or extra study.

Simulation 8: Competition-Dependent Target
Strengthening

Background

Most of the simulations in this article have focused on how
competition modulates forgetting. Importantly, the model also
predicts that competition should modulate strengthening: Target
units are closer to threshold in high-competition situations versus
low-competition situations (compare Figure 13 with Figure 11). As
such, target units should dip down more strongly during the
high-inhibition phase given high versus low competition (see
Figure 12), resulting in a greater strengthening effect. However, in
practice, this competition-dependent strengthening effect is hard to
find in RIF studies. As discussed earlier, several studies (e.g.,
M. C. Anderson, Bjork, & Bjork, 2000; Ciranni & Shimamura,
1999) have found equivalent target strengthening for partial prac-
tice (where competition should be relatively high) compared with
extra study or reversed practice (where competition should be
relatively low). In Simulation 1.1, we showed that the model can
replicate this null effect of competition on target strengthening. To
explain this finding, we argued that—on partial-practice trials—
the beneficial effects of competition on learning were being can-
celed out by occasional failures to recall the target, in which case
no strengthening occurred (M. C. Anderson, Bjork, & Bjork,
2000).

In the present simulation, we set out to demonstrate that the
model can, in fact, show a competition-dependent strengthening
effect; we also set out to more clearly delineate the boundary
conditions on this phenomenon. The above discussion suggests

that we should be able to unmask a competition-dependent target
strengthening advantage (for partial practice vs. extra study) by
boosting recall success during partial practice—on trials where the
target is recalled properly, more learning should take place in the
high-competition condition. To explore this idea, we manipulated
recall success at practice in two ways:

● The first way that we manipulated recall success at practice
was to vary the semantic strength of target items. Strength-
ening the target’s semantic trace increases the odds that the
model will be able to fill in based on semantic memory in
situations where the target’s episodic trace is weak.

● The second way that we manipulated recall success was to
vary the partiality of the retrieval cue at practice—holding
target strength constant, the model was cued with all four
associate-layer units and either 1, 2, 3, or 4 item-layer units.
Using a sparser retrieval cue should lead to worse target
recall.

For both of these manipulations, we expected that conditions
associated with relatively good target recall would show greater
strengthening after partial practice than after extra study, and that
conditions associated with relatively poor target recall would show
greater strengthening after extra study than after partial practice.

Method

In this simulation, we used the exact same paradigm that we
used to parametrically assess how target strength interacts with
RIF in Simulation 2.2 (see Figure 30). The only difference is that,
in addition to looking at partial-practice effects, we also included
an extra-study condition. Target strength (set during pretraining)
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was varied from .65 to .80 in steps of .05. During partial practice,
our default was to use cues comprising all four associate-layer
units and three out of four item-layer units. We also ran additional
simulations (given a target strength of .75) where we manipulated
the number of item-layer units that were used to cue recall at
practice (from one out of four units all the way up to four out of
four units).

Results

Effects of Target Strength

Figure 53 shows the results of our target strength manipulation.
These results confirm our assertion that (in the model) the relative
amount of strengthening for partial practice versus extra study
depends on target strength. For weak targets (where misrecall at
practice is more prevalent), more strengthening occurs for extra
study versus partial practice. For stronger targets (which are more
likely to be recalled accurately at practice), more strengthening
occurs for partial practice versus extra study.44

Effects of Cue Partiality

Figure 54 shows the results of simulations where we held target
strength constant at .75 and manipulated the number of item units
that were included in the practice cue (from one unit all the way up
to four units). Context scale was held constant at 1.00 across all of

the practice conditions. The data show an interesting nonmono-
tonic pattern whereby moving from a four-unit (full) practice cue
to a three-unit partial-practice cue boosts target strengthening but
moving from three-unit cues to two-unit cues and one-unit cues
leads to a decrease in target strengthening. These results can be
explained as follows:

● Three-unit partial practice results in the highest amount of
strengthening because the three-unit cue is just barely strong
enough to support accurate target recall. In this situation, the
target comes on at the start of the trial but dips down exten-
sively (in both cortex and hippocampus) when inhibition is
raised, resulting in robust strengthening (see Figure 12, upper
panels).

● Using a full (four-unit) cue reduces strengthening because
the target is too well specified (so it does not dip down as
much during the high-inhibition phase; see Figure 12, lower
panels).

44 To give a rough idea of how target strength affects recall accuracy at
practice, moving from a target strength of .65 to a target strength of .75
boosts percent correct recall at practice from .52 (SEM � .01) to .80
(SEM � .01).
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● Using a sparser partial-practice cue (with one or two item
units) reduces strengthening by reducing the odds that the
target will be recalled correctly in the first place.45

The model’s prediction of greater target strengthening given
high versus low competition (assuming correct target recall) may
help to explain findings from outside of the RIF literature. In
particular, there is a large body of literature showing that partici-
pants learn better when they successfully generate to-be-learned
stimuli based on partial cues, as opposed to merely viewing the
stimuli (the generation effect; for discussion of this effect, see
Slamecka & Graf, 1978). According to our model, this difference
is a straightforward consequence of competition being higher in
the generate-the-stimulus condition versus the view-the-stimulus
condition.

General Discussion

The research presented here shows how a small number of
simple learning principles can be used to account for a wide range
of RIF findings. Specifically, we have described a learning algo-
rithm incorporating the principles that

● Lowering inhibition can be used to identify competing
memories so they can be punished, and

● Raising inhibition can be used to identify weak parts of
memories so they can be strengthened.

Using these principles, the model can simulate RIF results
ranging from cue-independent forgetting, to effects of competitor
and target strength, to effects of partial practice versus extra study,
to RIF for novel episodic associations (see the Précis of Simula-
tions section in the introduction for a more complete list of results).

Furthermore, the model leads to several novel predictions regard-
ing boundary conditions on these effects.

This discussion section is divided into four parts:

● First, we discuss how our model relates to other theories of
RIF. This section covers the role of competitive dynamics in
driving learning, how blocking versus weakening contributes
to forgetting in our model, how associative unlearning theo-
ries of RIF can be reconciled with theories that posit weak-
ening of the competitor itself, the contributions of episodic
versus semantic learning to RIF in our model, the context
dependence of RIF, the role of PFC and top-down executive
control in modulating RIF, how our model relates to other
neural network models of learning and memory, and how our
model relates to abstract computational models of memory.

● Second, we provide an overview of novel behavioral pre-
dictions generated by the model.

● Third, we discuss some challenges for the model: how to
account for the effects of target–competitor similarity and
integration on RIF and how to account for data on the (pos-
sibly transient) time course of RIF. We also discuss various
ways in which the model could be improved (e.g., by adding
on a PFC layer and exploring how it interacts with other
structures during memory retrieval).

● Fourth, we discuss other applications of the model (besides
modeling RIF data). Specifically, we discuss our attempts to
characterize the functional properties of the oscillating learn-
ing algorithm (e.g., how many patterns it can store compared
with other algorithms; Norman, Newman, Detre, & Polyn,
2006). We also discuss other psychological domains that
could be addressed by the model.

Theoretical Implications

How Competitive Dynamics Drive Learning

One of the most important ideas presented here is that the
amount of learning that occurs (on a given trial) is a function of the
net input differential between the target memory and competing
memories. Assuming that the target memory wins the competition
(i.e., target units receive more net input than competitor units),
then more learning occurs when the margin of victory for the target
memory is small versus when the margin of victory is large. In the
simulations presented above, we demonstrated that this simple
framework can explain several important data points, including

● The finding that more competitor punishment occurs given
partial practice versus reversed practice or extra study (e.g.,
M. C. Anderson, Bjork, & Bjork, 2000; Ciranni & Shi-
mamura, 1999; see Simulation 1.1, Figures 13 and 15), and

45 To give a rough idea of how cue partiality affects recall accuracy at
practice, moving from a cue with three item units to a cue with one item
unit reduces percent correct recall at practice from .80 (SEM � .01) to .56
(SEM � .01).
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● The finding that strong competitors are punished more than
weak competitors (e.g., M. C. Anderson et al., 1994; see
Simulation 2.1, Figures 24 and 27).

We also discussed two data points that appear to be inconsistent
with the simple competitive-learning framework outlined here:

● The finding from M. C. Anderson et al. (1994) that increas-
ing target strength does not reduce RIF, and

● The finding that extra study and partial practice can lead to
equivalent levels of target strengthening even though there is
more competition in the partial-practice condition (for an
example, see Ciranni & Shimamura, 1999).

In both cases, we were able to isolate the factors responsible for
these (apparent) deviations from the competitive-learning frame-
work. Furthermore, we were able to show that—once these factors
are addressed—the model behaves in full accordance with the
competitive-learning framework (less competitor weakening given
strong vs. weak targets, more target strengthening given partial
practice vs. extra study; see Simulations 2.1 and 2.2 for discussion
of how target strength affects RIF, and see Simulation 9 for
discussion of how practice type affects target strengthening).

Perhaps the most important contribution of this competitive-
learning framework is that it provides a straightforward way of
characterizing boundary conditions on RIF. These predictions are
reviewed in the Summary of Predictions section below.

Forgetting Via Weakening of Attractor States

Blocking versus weakening. As discussed in the introduction,
theories such as Anderson’s posit that forgetting is driven—at least
in part—by actual weakening of stored memory traces. In contrast,
blocking theories posit that impaired competitor recall is an indi-
rect consequence of target strengthening, and that no actual weak-
ening of the competitor takes place.

In accordance with Anderson’s theory, our model posits that
weakening of stored memory traces contributes to RIF. In simu-
lations using category-plus-item-feature cues at test, RIF in the
model appears to be driven entirely by weakening of stored traces
and not at all by blocking. To illustrate this point, we ran simula-
tions showing that RIF was present when we limited learning at
practice to the low-inhibition (competitor weakening) phase but
not when we limited learning at practice to the high-inhibition
(target strengthening) phase (see Simulation 1.1 and Figure 16).

The total lack of observed blocking in Simulation 1.1 merits
further explanation: Insofar as recall is a competitive process in
our model, how is it possible to strengthen target items without
impairing recall of other (nonstrengthened) items? The fact that
target strengthening is not sufficient to cause forgetting in our
model (given category-plus-item-feature cues) can be explained in
terms of the following ideas:

● If we rank memories according to the amount of excitatory
support (net input) they receive, recall success is a function of
whether the net input received by the sought-after memory
exceeds the maximum of all of the other net input values.
Blocking occurs when learning at practice boosts the maxi-
mum net input value associated with other items to the point

where it leapfrogs over the net input value for the sought-after
item.

● Because of the very high learning rate that we are using in
the hippocampal model, episodic memory strength can come
close to its maximal value after a single study presentation.

● If we assume that some members of the practiced category
are encoded into episodic memory at study, then additional
learning at practice might result in practiced target items
matching or slightly exceeding these already-encoded items
in strength. However, because of ceiling effects on episodic
memory strength, it is unlikely that practiced targets will
substantially exceed these other items in memory strength.46

● Since the practice phase does not substantially affect the
maximum strength of other items from the practiced category,
blocking effects should be small or nonexistent.

Crucially, the model does not always predict a null blocking
effect. In other simulations (not presented in this article), we found
that the model shows a robust blocking effect when recall is cued
with the associate-layer category pattern on its own, without any
item-specific information. The key to explaining this result is that,
when the cue does not contain item-specific information, all cat-
egory members (targets and competitors) receive similar levels of
net input from the cue—the system is effectively balanced on a
knife-edge between multiple memory states. When the system is in
this unstable state, very small changes in target strength (at prac-
tice) can tip the balance in favor of recalling the strengthened
target at test. For additional discussion of the idea that blocking
should be larger given category cues versus category-plus-item-
feature cues, see M. C. Anderson et al. (1994).47

Associative unlearning versus inhibition. Within the realm of
models that posit actual weakening, Anderson distinguishes be-
tween associative unlearning models and “truly inhibitory” models
of weakening (see, e.g., M. C. Anderson, 2003; M. C. Anderson &
Bjork, 1994). As illustrated in Figure 2, associative unlearning
involves decrementing the connection between the cue (Fruit) and
the competitor (Apple). In contrast, true inhibition (to use Ander-
son’s terminology) involves weakening the Apple representation
itself.

As discussed in the introduction, the simple associative unlearn-
ing hypothesis depicted in Figure 2 cannot explain the presence of
RIF for cues other than Fruit. However, we think that it is possible
to reconcile the idea of associative unlearning with Anderson’s
inhibitory theory by moving away from unitary concept nodes,
toward a distributed-pattern approach to representing concepts.
Specifically, in our model, memories are represented as attractor

46 It is important to note that episodic memory traces do not completely
saturate after one learning trial and that semantic memory strength can
increase at practice also. However, these effects are relatively subtle
compared with the basic effect of whether or not an item has been encoded
into episodic memory.

47 M. C. Anderson, et al. (1994) used this idea to explain why they
observed RIF for weak competitors in Experiment 1 (which used category
cues) but not Experiments 2 and 3 (which used category-plus-letter-stem
cues).
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states comprising multiple, interconnected microfeatures. At prac-
tice, the learning algorithm acts to weaken associations coming in
to competitor features that pop up during the low-inhibition phase
(see Figure 5). The net effect of this associative weakening is to
make the competitor a weaker attractor overall, leading to gener-
alized forgetting. Thus, at a functional level, the competitor acts as
if it has been inhibited (it is generally less prone to become active),
but the mechanism of this inhibition is associative weakening,
operating at the level of microfeatures.

Learning attractors versus learning features. The idea of re-
lating RIF to distributed representations has been discussed previ-
ously by Anderson and his colleagues (e.g., M. C. Anderson,
Green, & McCulloch, 2000; M. C. Anderson & Spellman, 1995).
However, there are some important differences between our
distributed-feature model and the pattern-suppression distributed-
feature theory set forth by M. C. Anderson and Spellman (1995).
As discussed throughout this article, our model focuses on
strengthening and weakening of connections between features, and
the effect of these changes on attractor dynamics. By contrast, the
Anderson and Spellman pattern-suppression theory treats items as
distributed collections of isolated features that can be individually
strengthened or weakened. Also, there are important differences in
how the different models operationalize recall: In our model, we
operationalize recall on the basis of whether the model is in the
correct attractor state; to ascertain this, we look at recall of features
that are unique to the to-be-recalled item. By contrast, in the
Anderson and Spellman theory, recall is operationalized on the
basis of activation of all of the item’s features (shared and
unique).48

These two views lead to very different predictions regarding
how strengthening an item (via extra study of that item) will affect
recall of overlapping items. In Simulation 7, we discussed how, in
our model, extra study of target items can lead to forgetting of
overlapping competitors: When overlap is sufficiently high, the
unique features of the competitor start to pop up and (conse-
quently) are weakened, making them harder to retrieve in the
future. As shown in Figure 55, the M. C. Anderson and Spellman
(1995) theory makes the opposite prediction: According to this
theory, extra study of target items should improve recall of over-
lapping competitors by boosting the strength of shared features. It
should be possible to tease these views apart by running experi-
ments that carefully explore how overlap interacts with effects of
extra study.

Contributions of Episodic Versus Semantic Memory to
RIF

One of the central claims of our model is that both hippocampal
(episodic) and cortical (semantic) learning can contribute to
independent-cue RIF. In the model, the precise contributions of
these two types of learning depend on the details of the paradigm
being simulated. In paradigms that tap only episodic memory (e.g.,
Simulation 4), independent-cue RIF is driven entirely by weaken-
ing of hippocampal traces. In paradigms that tap only semantic
memory (e.g., Simulation 6), independent-cue RIF is driven en-
tirely by weakening of cortical traces. In paradigms where both
episodic and semantic memory contribute (e.g., Simulation 1.2),
independent-cue RIF is driven by a combination of hippocampal
and cortical weakening, but (proportionally) hippocampal weak-

ening contributes more to RIF than does cortical weakening. This
is a consequence of the fact that the learning rate is larger in the
hippocampal network than the cortical network.

Another important point to take away from these simulations is
that relatively subtle changes in the structure of the retrieval cue
can have a large effect on whether episodic associates of the cue
are punished (M. C. Anderson, 2003). In particular, we have
shown that small changes to the context scale parameter at practice
can change the observed pattern of RIF results: With context scale
set to 1.00, episodic competitor pop-up occurs only if the compet-
itor pops up first in semantic memory. This dynamic limits com-
petitor punishment to strong semantic associates of the cue,
thereby helping to explain why M. C. Anderson et al. (1994) and
Bäuml (1998) found a null RIF effect for weak semantic associates
of the cue (see Simulation 2.1). However, with context scale set to
1.25, episodic associates of the cue can pop up on their own. This
dynamic is important for explaining how RIF can occur in purely
episodic paradigms (see Simulation 4).

Context Dependence of RIF

Several recent discussions of RIF have argued that RIF is
context dependent (e.g., Perfect et al., 2004; Racsmany & Conway,
2006). Different authors use this term in slightly different ways.
The key unifying claim is that RIF involves weakening or inhibi-
tion of context-sensitive episodic memories from the study phase.
Thus, changing context between the initial learning phase and
subsequent phases of the experiment should reduce RIF.

Our model shows context-dependent RIF effects because the
oscillating algorithm weakens context-dependent hippocampal
memories. Simulation 5 provides a useful illustration of the
context-dependent nature of RIF in our model: Changing the
context representation between the novel associate study phase and
the practice phase effectively prevents episodic traces from the
novel associate study phase from popping up at practice, thereby
protecting them from punishment.

However, it is also important to emphasize that RIF is not
completely context dependent in the model. As discussed through-
out the article, the oscillating algorithm weakens traces that pop up
in the hippocampal network and also in the cortical network (i.e.,
the associate and item layers). Insofar as the cortical network is not
directly connected to the context layer, the model predicts that
cortically mediated RIF effects (like the semantic RIF effect that
we showed in Simulation 6) should still be observed when context
is changed between study and test. Another point is that, while
recall in the hippocampal component of our model is modulated by
context, contextual match is not a strict prerequisite for hippocam-
pal recall. To the extent that it is possible to access hippocampal
traces outside of the original context, weakening the hippocampal
trace should result in some degree of generalized (i.e., context-
independent) impairment.

48 As stated earlier, we think that it is inappropriate to factor shared
features into the recall score. This amounts to giving the model partial
credit for recalling shared features (e.g., the fact that the to-be-recalled item
is edible) even if the model cannot recall the actual studied word (Apple).
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How PFC Contributes to RIF

Anderson’s recent writings on RIF have emphasized the role of
top-down executive control (implemented by PFC) in RIF (e.g.,
M. C. Anderson, 2003; Levy & Anderson, 2002). According to this
view, PFC acts to suppress competing memory traces during
retrieval; these suppression effects linger after the trial is over,
resulting in RIF. We agree with the idea that PFC plays a large role
in RIF. However, we do not think that PFC plays a necessary role
in competitor weakening. According to our theory, RIF is a con-
sequence of competition between memories (e.g., in the medial
temporal lobes) and local learning processes that operate on the
basis of these competitive dynamics. So long as there is competi-
tion, there will be competitor weakening. PFC can influence which
memories are weakened and to what extent these memories are
weakened by sending extra activation to memories with particular
features (Miller & Cohen, 2001), thereby biasing the retrieval
competition in favor of memories with those features. There are
large neuropsychological (e.g., Schacter, 1987) and neuroimaging
literatures (e.g., Fletcher & Henson, 2001) showing that PFC helps
to target memories from particular temporal contexts. Thus, we
would expect PFC to play a key role in focusing retrieval on
study-phase memories in RIF experiments (a process that is cap-
tured in our model in a very crude way with the context scale
parameter). More generally, we think that PFC plays a critical role
in minimizing blocking at test by helping to focus attention on
features of the retrieval cue that are especially diagnostic (i.e.,
features that match the sought-after item but not other, competing
items). We discuss PFC contributions to RIF in more detail in the
Model Improvements section below.

Comparison With Other Neural Network Models

Our model is the first to address the full constellation of RIF
phenomena discussed here. To our knowledge, the only other
published neural network model that has specifically tried to
address RIF data is a model developed by Oram and MacLeod
(2001). Below, we provide a brief overview of the Oram and

MacLeod model. We argue that, although their model can explain
the basic finding that practice helps recall of the practiced item and
hurts recall of related nonpracticed items, it lacks the requisite
mechanisms that would allow it to model the competition depen-
dence of RIF. Finally, we discuss the possibility that the Bienen-
stock, Cooper, and Munro (1982; BCM) learning algorithm might
be able to account for competition-dependent learning.

The Oram and MacLeod (2001) model of RIF. This model
consists of a two-layer network, where input nodes (each corre-
sponding to a specific item) are connected in a diffuse fashion to
a set of “memory nodes” that serve as an internal representation of
the inputs. Connections in the model are modified according to
simple Hebbian learning principles, whereby connections between
active input nodes and active memory nodes are strengthened and
connections between inactive input nodes and active memory
nodes are weakened (for additional background on this kind of
learning rule, see O’Reilly & Munakata, 2000; Grossberg, 1976).
In the Oram and MacLeod model, items that are grouped together
at study end up getting linked to a shared set of memory nodes.
Subsequently, when one item from the group is practiced, this has
two effects:

● Connections between the practiced item’s (active) input
node and the shared memory nodes are strengthened, and

● Connections between the nonpracticed items’ (inactive)
input nodes and the shared memory nodes are weakened.

This fact allows Oram and MacLeod (2001) to explain facili-
tated recall of the practiced item and impaired recall of nonprac-
ticed items from the same group. Oram and MacLeod did not
address the other RIF phenomena described in this article.

Modeling competition-dependent learning. A central question
for any neural network model of RIF is whether it can account for
the competition-dependent nature of RIF (e.g., more RIF for strong
vs. weak competitors; more RIF given partial practice vs. extra
study). To simulate competition-dependent learning, a learning
algorithm needs to be sensitive to the level of net input relative to
threshold: Competitor units that are close to threshold should be
weakened, but competitor units that are far below threshold should
be left alone.

Most neural network models do not have this property. For
example, the Hebbian learning algorithm used by Oram and
MacLeod (2001) nonselectively weakens connections between in-
active sending units and active receiving units regardless of
whether the inactive unit is close to threshold or far below thresh-
old. As such, it seems unlikely that the Oram and MacLeod model
will be able to simulate the competition-dependent learning phe-
nomena described above.

Our model implements competition-dependent learning by us-
ing oscillating inhibition to probe for units that are lurking just
below threshold: Competitor units that are close to threshold pop
up (and are weakened), but units that are far below threshold stay
inactive (and are left alone). A recently developed algorithm by
Senn and Fusi (2005) takes a more direct approach: Instead of
oscillating inhibition, it peeks at the underlying net input value and
learns only when net input is close to threshold (see also Diederich
& Opper, 1987). Senn and Fusi showed that incorporating this net
input criterion greatly boosts the capacity of their algorithm for
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Figure 55. Effect of strengthening of Pear (via extra study) on recall of
Apple, according to the pattern-suppression theory set forth by M. C.
Anderson and Spellman (1995). This theory posits that learning adjusts the
strength of individual features and that recall of an item is a function of the
summed activation of all of the item’s features. According to M. C.
Anderson, Bjork, and Bjork (2000), extra study of Pear should strengthen
the features of Pear without weakening the features of other items. This
featurewise strengthening of Pear is indicated in the figure using plus signs.
Insofar as strengthening Pear boosts the strength of features that are shared
by Apple and Pear, the theory predicts that strengthening Pear should lead
to improved recall of Apple.
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storing patterns, but they did not provide a detailed biological
account of how this criterion is implemented. The oscillating
algorithm can be viewed as a biologically plausible implementa-
tion of ideas implemented in more abstract form by Senn and Fusi.

The BCM algorithm and competitor punishment. Another al-
gorithm besides ours that could, in principle, solve the problem of
competitor punishment is the BCM algorithm (Bienenstock et al.,
1982). Like the simple Hebbian learning algorithm used by Oram
and MacLeod (2001), BCM strengthens connections between ac-
tive sending units and strongly active receiving units. The critical
property of BCM, with respect to competitor punishment, is that it
reduces synaptic weights from active sending units when the
receiving unit’s activation is above zero but below its average level
of activation. Put simply, when an input pattern elicits weak
activation in a receiving unit, the connections between the input
pattern and the (weakly activated) receiving unit are weakened.

To apply BCM to RIF data, it is necessary to adjust the level of
inhibition such that strong competitors are just above threshold (so
they are weakly active) but weak competitors are below threshold
(so they are inactive). If the partial-practice cue Fruit–Pe elicits
strong activation of Pear, weak activation of Apple (a strong
competitor), and no activation of Kiwi (a weak competitor), the
BCM algorithm will strengthen connections to Pear, weaken con-
nections to Apple, and it will not adjust connections to Kiwi. This
property suggests that it is worth exploring whether BCM can
account for the full range of RIF findings discussed in this arti-
cle.49 One potential issue is that previous applications of BCM
have focused on feed-forward self-organizing networks (e.g., mod-
els of the development of receptive fields in visual cortex; Bienen-
stock et al., 1982), and it is unclear whether BCM is up to the basic
task of memorizing large numbers of overlapping patterns (so they
can be completed on the basis of partial cues) in a recurrently
connected network.50 It is also worth noting that BCM’s form of
competitor punishment and the oscillating algorithm’s form of
competitor punishment are not mutually exclusive: It is possible
that combining the algorithms would result in better performance
than either algorithm taken in isolation. We will explore ways of
integrating BCM with the oscillating learning algorithm in future
research.

Comparison With Abstract Computational Models of
Memory

Abstract memory models like SAM (Search of Associative
Memory; Raaijmakers & Shiffrin, 1981) and REM (Retrieving
Efficiently from Memory; Shiffrin & Steyvers, 1997) have proved
to be very useful in understanding interference effects in memory
(for a recent review, see Raaijmakers, 2005; see also J. R. Ander-
son, 1983, and Reder et al., 2000, for descriptions of other relevant
models). These models posit that memory traces are placed in a
long-term store at study, without any sort of structural interference
between memory traces. At test, cues activate stored traces to
varying degrees, and these activated traces compete to be the one
that gets retrieved. At this point in time, no published studies have
specifically addressed the RIF phenomena described here using
abstract models like SAM and REM. However, we can still discuss
(in a general sense) the relationship between the kinds of expla-
nations that are offered by these models and the explanations that
are provided in this article.

The hallmark of the abstract-modeling approach, as applied to
forgetting data, has been to show that phenomena that were pre-
viously attributed to unlearning (e.g., retroactive interference in the
AB–AC interference paradigm; Barnes & Underwood, 1959) can
actually be explained by blocking (Mensink & Raaijmakers,
1988). This work is very important—in addition to giving the field
a more robust appreciation for the power of blocking theories, it
has also led researchers to think more carefully about the role of
retrieval cues (in particular, the role of contextual cues) in deter-
mining forgetting effects (e.g., Howard & Kahana, 2002; Mensink
& Raaijmakers, 1988).

Our model deviates sharply from the approach taken by abstract
models, insofar as our model incorporates a synaptic-level unlearn-
ing process, and it posits that synaptic weakening is a major cause
of forgetting (although blocking can also contribute in situations
where retrieval cues are relatively ambiguous; see the discussion
of blocking versus weakening above). While we appreciate the
analytic utility of trying to explain as many findings as possible
without positing any kind of trace weakening, there is abundant
evidence for activity-dependent synaptic weakening in the brain
(e.g., Malenka & Bear, 2004), and it stands to reason that this
synaptic weakening has functional consequences. Our work can be
construed as an attempt to better understand when memory weak-
ening occurs and how it affects performance on semantic and
episodic memory tests. In future work, it will be valuable to assess
whether abstract models can account for the findings described in
this article without positing any kind of competition-dependent
memory weakening mechanism.51

Summary of Predictions

This section provides a brief overview of the novel model
predictions discussed in the main part of the article. Each predic-
tion is linked back to the section of the article where it was first
discussed.

Target Strength Effects

● Target strength should have a nonmonotonic effect on RIF:
When targets are very weak, increasing target strength should

49 While (to our knowledge) no one has used BCM to address RIF data,
some studies have used BCM to address competitive-learning phenomena
in other domains. For example, Gotts and Plaut (2005) showed that BCM
can account for data from a perceptual negative priming paradigm, where
participants are asked to attend to a visual stimulus and ignore another
(simultaneously presented) visual stimulus. Negative priming refers to the
effect of ignoring a stimulus on participants’ ability to (subsequently)
respond to that stimulus; see Fox (1995) for a review.

50 By way of comparison, we have demonstrated (in work published
elsewhere; see Norman, Newman, Detre, & Polyn, 2006) that the oscillat-
ing algorithm is capable of memorizing large numbers of overlapping
patterns in a multilayer cortical network; this work is discussed briefly in
the Functional Properties of the Learning Algorithm section below.

51 A recent conference paper by Green and Kittur (2006) attempted to
account for RIF data from M. C. Anderson, Green, and McCulloch (2000)
using an abstract model that (unlike SAM and REM) also contains a
mechanism for inhibiting the features of competing memories. At this
point, it is too early to evaluate how well the model will be able to explain
the full range of RIF data described here.
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boost RIF (by delaying the onset of competitor activation so
it lines up better with the low-inhibition phase of the oscil-
lation). Further increases in target strength should reduce RIF
by reducing the overall amount of competitor activation (see
Simulation 2.2, Figure 31). As mentioned in the discussion of
Simulation 2.2, one explanation for the null target strength
effect observed by M. C. Anderson et al. (1994) is that their
weak target and strong target conditions happened to fall on
the rising and falling sides (respectively) of this nonmono-
tonic curve.

Competitor Strength Effects

● In the model, competitor punishment is a function of the
strength of the competitor relative to the target and also of the
strength of the competitor relative to other competitors. As
such, strengthening some competitors can reduce RIF for
nonstrengthened competitors (see Simulation 2.3, Figure 34).
When testing this prediction, it is important to recognize that
the competitive space encompasses both studied and nonstud-
ied semantic associates of the cue. For example, in Figure 36,
we showed that increasing the semantic strength of nonstud-
ied competitors can reduce RIF for studied competitors.

RIF Using External Cues

● In Simulation 5, we explained the Perfect et al. (2004)
finding of null RIF given novel associate cues (e.g., null RIF
when cuing for Apple using Zinc) in terms of contextual
focusing at practice. Specifically, we argued that participants
use contextual information at practice to focus retrieval on the
standard study phase. Insofar as the Zinc–Apple trace is
formed outside of the standard study phase, focusing retrieval
on the standard study phase effectively prevents pop-up (and
weakening) of the Zinc–Apple trace. This view implies that
manipulations that make it more difficult to contextually
block out the Zinc–Apple trace at practice (e.g., having par-
ticipants study Zinc–Apple and Fruit–Apple as part of the
same list) should boost the amount of RIF elicited by Zinc
(see Figures 46 and 47).

Forgetting After Extra Study

● In Simulation 7, we showed that extra study can lead to
forgetting of other studied items if the level of pattern overlap
between targets and competitors (in cortex and in the hip-
pocampus) is high (see Figure 52). One way to test this would
be to present pictures along with sentences in the M. C.
Anderson and Bell (2001) paradigm (e.g., a picture of the
teacher lifting the violin) and then vary the similarity of the
pictures.

Effects of Partial Practice Versus Extra Study on Target
Recall

● In Simulation 8, we showed that it should be possible to
observe more target strengthening after partial practice versus
extra study if we engineer a situation where the target is just

barely strong enough to be retrieved correctly during partial
practice. We showed how it is possible to manipulate the
semantic strength of the target and the specificity of the
retrieval cue to generate optimal dynamics for strengthening.
If the target is too weak (and/or the cue is too vague) to
support accurate recall at practice, this diminishes strength-
ening. Conversely, if the target is retrieved too easily (as in
the extra-study condition), this also diminishes strengthening
by reducing the overall amount of competitor pop-up that
occurs at practice (see Figures 53 and 54).

Effects of Context Cue Strength on Episodic RIF and
Semantic RIF

● To reconcile the finding of RIF for novel episodic associ-
ations in M. C. Anderson and Bell (2001) with the null RIF
effect for weak semantic associates in M. C. Anderson et al.
(1994), we had to posit that participants cue more strongly
with context when trying to recall novel episodic associations
versus when trying to recall studied items that are semanti-
cally related to the cue. In the Boundary Conditions section of
Simulation 4, we highlighted two novel implications of this
view: Participants who try to retrieve novel episodic associ-
ates of a cue will also show RIF for studied weak semantic
associates of the cue. Also, participants who try to retrieve
semantic associates of a cue will not show RIF for episodic
associates of the cue.

Neurophysiological Predictions

If the link between the oscillating algorithm and theta oscilla-
tions (as described in the Theta Oscillations: A Possible Neural
Substrate for the Oscillating Learning Algorithm section above) is
valid, the model can be used to make predictions regarding the
fine-grained activation dynamics of target and competitor repre-
sentations. According to the model, the activation of competitor
representations should increase at a fixed phase of theta (corre-
sponding to the low-inhibition phase), and the activation of the
target representation should dip at a fixed phase of theta (corre-
sponding to the high-inhibition phase) that is 180° out of phase
with the “competitor bump.” The idea that activation dynamics
(with respect to theta) should vary for items receiving high levels
of net input (targets) versus items receiving less net input (com-
petitors) receives some support from the rat navigation electro-
physiology literature: Several studies have found that a place cell
will fire during a specific theta phase when the rat is in the
preferred place of the cell and that the firing will shift phases as the
rat moves from this preferred location (see, e.g., O’Keefe & Recce,
1993; Yamaguchi, Aota, McNaughton, & Lipa, 2002; see also
Mehta, Lee, & Wilson, 2002).

The model predicts that the theta-locked competitor bump and
target dip for a given stimulus should both decrease in size as a
function of experience with that stimulus (see Figure 14). Impor-
tantly, the model also predicts that the size of the competitor bump
can be used to predict RIF—a large competitor bump should result
in extensive punishment of that competitor, and a smaller bump
should lead to less punishment.

Testing the above predictions will require methodological ad-
vances in neural recording: Specifically, we will need a means of
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reading out the instantaneous activation of the target and compet-
itor representations, and a means of relating these activation dy-
namics to theta. One way to accomplish this goal is to use pattern-
classification algorithms, applied to thin time slices of
electrophysiology data (on the order of milliseconds), to isolate the
neural signatures of the target and competitor representations.
Once the pattern classifier is trained, it can be used to track the
activity of these representations over time (and across phases of
theta). Pattern-classification studies meeting these desiderata are
underway now in our laboratory (for preliminary results, see
Newman & Norman, 2006).

Challenges for the Model

In this section, we discuss important challenges for the model
and ways that the model could be modified to address these
challenges.

Effects of Target–Competitor Integration and Similarity

As reviewed by M. C. Anderson (2003), several extant studies
have explored how target– competitor integration (i.e., how
strongly the target’s features are linked to the competitor’s fea-
tures) and target–competitor similarity (i.e., how many features
target and competitor have in common) interact with RIF. These
studies have generally found that increasing target–competitor
integration or similarity reduces RIF. For example, M. C. Ander-
son, Green, and McCulloch (2000) had participants study two
exemplars from a category at the same time (e.g., Red–Tomato and
Red–Brick), where one category exemplar (e.g., Tomato) was a
target and the other was a competitor (e.g., Brick); participants
were asked to find either similarities or differences between the
two items. RIF (after partial practice) was observed in the find-
differences condition but not in the find-similarities condition.
More recently, Goodmon (2005) took the materials from a study
that had failed to obtain RIF (Butler, Williams, & Zacks, 2001),
and showed that RIF effects emerged after partial practice when
the materials were rearranged to minimize target–competitor as-
sociation strength (for other examples of how target–competitor
similarity/integration can reduce RIF, see M. C. Anderson & Bell,
2001; M. C. Anderson & McCulloch, 1999; Bäuml & Hartinger,
2002).

Simulating these findings is an important challenge for our
model. In particular, we need to reconcile the above findings
(showing that increasing similarity/integration reduces the amount
of forgetting caused by partial practice) with the results of Simu-
lation 7, which showed that—in the model—boosting pattern
similarity increases the amount of forgetting caused by extra
study. Below, we discuss how (in terms of our modeling frame-
work) boosting target–competitor similarity could have opposite
effects in extra-study and partial-practice paradigms, boosting
forgetting in the former case and reducing forgetting in the latter
case. Then, we discuss how issues with kWTA inhibition make it
difficult to simulate these results in our model (as it currently
stands), and we discuss ways of remedying this problem.

A competitive-learning account of integration and similarity
effects. As with other manipulations discussed in this article,
seemingly contradictory results can be sorted out when one care-
fully considers how similarity/integration manipulations affect the

level of excitatory support received by competitors (relative to
targets) in the model. Increasing target–competitor integration
(association strength) and target–competitor similarity (feature
overlap) should both increase the amount of excitatory input
received by competitor units when the target is active, thereby
narrowing the gap in excitatory support between target and com-
petitor units. The key difference between the extra-study condition
and the partial-practice condition is the size of the target–
competitor gap prior to increasing similarity/integration.

Extra-study condition. As discussed in Simulation 7, compet-
itors do not receive enough support to pop up on extra-study trials
when target– competitor overlap is low. Increasing target–
competitor overlap boosts excitatory support for competitors to the
point where competitors start to pop up (and show RIF).

Partial-practice condition. The situation is very different for
partial practice. On partial-practice trials, the net input gap be-
tween targets and competitors in the model is small enough to
trigger competitor pop-up (see Figure 13), even if there is abso-
lutely no feature overlap or integration between targets and com-
petitors in the item layer. In this situation, boosting target–
competitor similarity or integration will narrow the net input gap
between target and competitor representations even more. If the
competitor receives a sufficiently high level of support (relative to
the target), we should observe a situation like the one we observed
in the weak target, strong competitor condition of Simulation 2.1,
where the competitor starts to pop up before the onset of the
low-inhibition phase. As discussed in Simulations 2.1 and 2.2, this
premature pop-up should reduce RIF. In the limiting case, if the
competitor and target are receiving nearly equal levels of support
(e.g., due to extremely strong target–competitor integration), one
might imagine that the competitor and the target would act as a
single “functional unit”—coming on together at the start of the
trial, dipping down together during the high-inhibition phase, and
then staying on together during the low-inhibition phase. In this
case (where the competitor’s activation dynamics match the tar-
get’s activation dynamics), we might expect the competitor to
show strengthening, not weakening, in the high-integration con-
dition. This pattern was observed by M. C. Anderson, Green, and
McCulloch (2000).

In summary, our learning framework predicts that increasing
similarity/integration when excitatory support for the competitor is
relatively low can boost forgetting by triggering pop-up of the
competitor (this is what happened in Simulation 7). However,
increasing similarity/integration when excitatory support for the
competitor is already high can reduce forgetting by increasing the
odds that the competitor will activate before the start of the
low-inhibition phase. This latter fact may help explain why M. C.
Anderson, Green, and McCulloch (2000) and others have found
less RIF with increasing target–competitor integration.

Problems with kWTA inhibition. Importantly, while our learn-
ing framework can (in principle) account for reduced RIF with
increased target–competitor similarity/integration, there are ways
in which the behavior of the actually implemented model diverges
from the idealized account described above. We mentioned above
that—with sufficiently high levels of target–competitor integra-
tion—the competitor and target should act as a single functional
unit. However, it is not possible to simulate this dynamic using the
kWTA inhibitory algorithm. As discussed earlier, the kWTA al-
gorithm enforces a rigid limit on the number of units that can be
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strongly active at once when inhibition is set to its normal (base-
line) value. In our simulations, kWTA is parameterized to allow
four units (i.e., a single item) to be active given normal inhibition,
and there is no way to adaptively expand this limit to allow the
target and competitor to be active at the same time (regardless of
how much mutual support there is between the target and the
competitor).

The most straightforward way to remedy this problem is to replace
the kWTA inhibitory algorithm with explicitly simulated inhibitory
interneurons. While this will increase the complexity of the model
(and the complexity of the activation dynamics generated by the
model), neural network researchers have made great strides in recent
years toward understanding how to generate stable activation dynam-
ics using a mixture of excitatory and inhibitory neurons (e.g., Wang,
2002). In networks with explicitly simulated inhibitory interneurons,
the amount of activation elicited by a given input is an emergent
property of interactions between excitatory and inhibitory interneu-
rons (instead of being directly legislated by the inhibitory algorithm,
as is the case with kWTA). As such, we expect that this architecture
will have sufficient flexibility (in terms of the number of neurons that
are allowed to be active) to allow the target and competitor to act as
a single functional unit if the target and competitor representations are
strongly interconnected.

Time Course of RIF

Another challenge for the model is simulating data on the time
course of RIF. In the model, target strengthening and competitor
punishment are both enacted through the same mechanism: mod-
ification of synaptic weights. This implies that, in principle, it
should be possible to observe competitor punishment effects that
are as long-lasting as target strengthening effects.

This view is challenged by a study conducted by MacLeod and
Macrae (2001). In that study, MacLeod and Macrae manipulated
the length of the interval between the end of the practice phase and
the beginning of the test phase: In the short-delay condition, this
interval lasted 5 minutes; in the long-delay condition, this interval
lasted 24 hours. MacLeod and Macrae found robust competitor
punishment and target strengthening after a 5-minute delay; after
the 24-hour delay, target strengthening was largely intact, but the
RIF effect was gone (for a similar result, see Saunders &
MacLeod, 2002). As things stand, these two studies are the only
ones (that we know of) that have used delays lasting longer than a
few hours to examine RIF, so it is unclear whether the idea of “no
RIF after 24 hours” reflects a general principle that applies across
all RIF paradigms (not just the paradigms used in the studies cited
above).

One way to account for decreased RIF after a delay is to appeal
to the context dependence of RIF: To the extent that RIF is context
dependent and elapsed time is correlated with change in the
participant’s mental context, this implies that elapsed time should
reduce RIF. As discussed above, our model predicts that it should
be possible to observe some RIF after a context change, but these
effects might be small and thus hard to detect.

Another possible explanation of null RIF after a 24-hour delay
relates to the effects of sleep on memory representations. Recently,
Norman, Newman, and Perotte (2005) presented simulations
showing how the oscillating learning algorithm can be used to
autonomously repair damaged attractor states: If noise is injected

into a trained network (with no other external input), that noise will
coalesce into stored attractor states. Norman et al. showed that, if
an attractor has been weakened (but still exists in the network), this
process is capable of activating the damaged attractor and then
fixing it (by oscillating inhibition to locate weak parts of the
memory and then strengthening these weak parts). Furthermore,
Norman et al. argued that this autonomous attractor-repair process
occurs during REM sleep.52 If this theory is correct, it is possible
that participants in the 24-hour-delay condition of the MacLeod
and Macrae (2001) and Saunders and MacLeod (2002) studies
failed to show RIF because REM sleep (during the 24-hour reten-
tion interval) repaired the attractor damage that occurred during
the (presleep) practice session. This view implies that if we un-
confound the effects of time and REM sleep, we should find that
REM sleep sharply reduces RIF but that time per se does not
differentially interact with competitor punishment versus target
strengthening effects.

Model Improvements

Above, we described how kWTA inhibition impedes the mod-
el’s ability to fully account for target–competitor similarity and
integration effects and how kWTA could be replaced by more
realistic forms of inhibition. In this section, we evaluate other
simplifications built into the model and discuss ways in which we
can move beyond these simplifications.

Cortical Network

In our current model, each item has a single, unified cortical
representation. However, in the actual brain, cortex represents
items in a hierarchical fashion, with low-level perceptual features
represented at the bottom of the hierarchy and more abstract
concepts represented at the top of the hierarchy; each layer of the
hierarchy works to extract statistical regularities in the layer(s)
below it. In light of this fact, we have started to explore how the
oscillating algorithm works in hierarchical networks. One advan-
tage of this approach is that it allows us to make more principled
predictions about where in the hierarchy competition should occur.
As noted by M. C. Anderson (2003), competition can occur at
many levels, and this has strong consequences for RIF: For exam-
ple, if competition is taking place between conceptual representa-
tions, we might expect RIF to be observed on conceptual implicit
memory tests but not perceptual implicit memory tests (see, e.g.,
Perfect, Moulin, Conway, & Perry, 2002). However, if competi-
tion is taking place between perceptual representations, RIF should
be observed on tests that tap surface properties of the stimulus (see
Bajo, Gomez-Ariza, Fernandez, & Marful, 2006, for an example of
orthographic RIF and Levy et al., 2007, for an example of pho-
nological RIF).

Another important difference between hierarchical models of
cortex and our current cortical network is that—in hierarchical
networks—only some of the layers (at the bottom of the hierarchy)
receive external input. The other layers are free to develop their
own representations of input patterns. Norman, Newman, Detre,

52 For discussion of how this REM-sleep attractor-repair process can
help to protect stored knowledge (so it is not catastrophically swept away
by new learning), see Norman et al. (2005).
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and Polyn (2006) described how the oscillating-inhibition learning
algorithm works in a multilayer network (consisting of an input–
output layer that is bidirectionally connected to a hidden layer).
Specifically, they described how—in addition to strengthening and
weakening representations—the learning algorithm also changes
the structure of hidden representations elicited by input patterns to
facilitate subsequent recall of these input patterns. For example,
consider the case of two similar input patterns (A and B) that are
repeatedly presented in an interleaved fashion. Initially, A will pop
up as a competitor when B is studied, and B will pop up as a
competitor when A is studied. When A activates as a competitor
(on B trials), the competitor punishment mechanism will dissociate
the unique features of A from the hidden representation elicited by
B (likewise, the competitor punishment mechanism will dissociate
the unique features of B from the hidden representation elicited by
A). The net result of these changes is differentiation (McClelland
& Chappell, 1998; Norman & O’Reilly, 2003; Shiffrin et al.,
1990): As training progresses, the hidden representations of A and
B will move farther and farther apart until they are sufficiently
distant that A no longer pops up as a competitor on B trials and
vice versa. This differentiation process should have testable con-
sequences (e.g., Stimulus A should be less effective in priming
Stimulus B).

Hippocampal Network

The hippocampal model used in this article is also highly
simplified relative to other published hippocampal models: It
consists of only one layer (instead of multiple layers corresponding
to different hippocampal subregions), it restricts learning to a
relatively small number of projections, and it externally enforces
pattern separation (rather than having pattern separation be an
emergent property of the model). These simplifications were nec-
essary to keep the speed and complexity of the model within
acceptable bounds. However, with the advent of faster computers,
and given our improved understanding of how the model works,
we can start to consider ways of bridging the gap between our
simplified hippocampal model and more complex, biologically
realistic models (e.g., Becker, 2005; Hasselmo et al., 2002; Nor-
man & O’Reilly, 2003). Using a hippocampal model that maps
more closely onto the actual neurobiology of the hippocampus
would have several benefits: It would make it easier to use the
model to address the vast empirical literature on hippocampal theta
oscillations and learning (e.g., Hyman et al., 2003). It would also
make it easier to relate our model to other theoretical accounts of
hippocampal theta (e.g., Hasselmo’s idea that theta oscillations
optimize hippocampal dynamics for encoding vs. retrieval; see
Norman et al., 2005, for discussion of how our theory relates to the
Hasselmo et al., 2002, model).

Modeling the Dynamics of Top-Down Control

At present, the model does not include a means of simulating
top-down control (via PFC). As discussed above, we believe that
PFC plays a major role in shaping competitive dynamics and
(through this) shaping which memories are punished and which
memories are strengthened. PFC should be especially important in
situations where the target is much weaker than the competitor. In
these situations, PFC can ensure that the (weaker) target wins by

sending extra activation to the target representation (Miller &
Cohen, 2001).

The simplest way to simulate PFC involvement at retrieval is to
include an additional input projection that provides support to
features of the target memory; see Norman, Newman, and Detre
(2006) for some preliminary simulations of PFC contributions to
RIF using this method. This method allows us to vary the degree
of PFC involvement on a particular trial. However, it does not
allow us simulate the fine-grained temporal dynamics of PFC
involvement. To address this problem, we plan to implement a
simple network architecture for conflict detection and cognitive
control, as proposed by Botvinick, Braver, Barch, Carter, and
Cohen (2001). In that article, Botvinick et al. proposed that the
function of anterior cingulate cortex (ACC) is to detect conflict
between representations (where conflict is operationalized as co-
activity of incompatible representations).53 When ACC detects
conflict, this causes PFC to activate, which (in turn) serves to
resolve the conflict. For example, consider the Johnson and Ander-
son (2004) study mentioned earlier, where participants were given
homographs like prune with dominant noun meanings (the fruit
prune) and subordinate verb meanings (trim) and were asked to
complete word fragments that matched the subordinate verb mean-
ing. In this situation, ACC would be set up to detect coactivity of
the noun and verb representations. When coactivity is detected,
this would trigger PFC activity, which would selectively boost
activation of the verb representation (resolving the conflict). We
expect that this model will allow us to generate detailed predic-
tions about the dynamics of PFC intervention in memory retrieval
and about how these dynamics influence learning.

Other Applications of the Model

The work presented here constitutes a first step toward under-
standing the neural basis of competitor punishment, and we are
currently working to further our understanding of the learning
algorithm (and its relation to neural and behavioral data) in several
different ways. One approach has been to assess the functional
properties of the algorithm: Do the same features of the algorithm
that help us explain RIF (in particular, its ability to punish com-
petitors) also help the algorithm do a better job of memorizing
patterns? Another approach has been to apply the model to psy-
chological domains other than RIF. These two approaches are
briefly reviewed below.

Functional Properties of the Learning Algorithm

Norman, Newman, Detre, and Polyn (2006) showed that, apart
from its useful psychological properties, the oscillating algorithm
also has desirable functional properties: Using the hierarchical
cortical network described above (i.e., with a hidden layer that is
bidirectionally connected to the input–output layer), Norman,
Newman, Detre, and Polyn found that the oscillating algorithm
outperforms several other algorithms (e.g., back-propagation and
Leabra) at storing and retrieving correlated input patterns. For
example, when given 200 patterns to memorize (with average

53 For a model of how ACC learns to detect conflict, see Brown and
Braver (2005).
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between-pattern feature overlap of 57% and noisy retrieval cues),
a version of the oscillating algorithm with 40 hidden units can
correctly recall approximately 100 of these patterns (based on
partial cues), whereas a comparably sized Leabra network recalls
fewer than 10 patterns. As discussed by Norman, Newman, Detre,
and Polyn, the oscillating algorithm’s good performance on these
pattern memorization tasks is due to its ability to limit learning to
situations where learning is most important (i.e., when the target is
weak or when there are strong competitors). This principle of
learning only when necessary helps to minimize the extent to
which new learning disrupts stored knowledge, thereby boosting
the overall capacity of the network (Diederich & Opper, 1987;
Senn & Fusi, 2005). The key point to be gleaned from this
discussion is that the exact same attributes that help the model
account for data on competition-dependent learning (selective
weakening of close competitors and selective strengthening of
weak targets) also help the model do a better job according to
purely functional criteria.

Other Psychological Data

In this article, we have focused on a particular set of RIF results
because we thought they were especially constraining and also
illustrative of the model’s unique properties. However, the RIF
findings discussed here constitute only a small fraction of the
space of findings from memory paradigms (and other types of
paradigms) that could—in principle—be addressed by the model.

In one line of work, we have started to simulate familiarity-
based recognition using a hierarchical version of the cortical
network, operationalizing familiarity in terms of the size of the dip
in target activation during the high-inhibition phase. As stimuli are
presented repeatedly (making them more familiar), the dip in target
activation during the high-inhibition phase gets smaller. Norman et
al. (2005) presented simulations showing that the model’s capacity
for supporting familiarity-based discrimination (operationalized in
terms of the number of familiar and unfamiliar patterns that can be
discriminated) is much higher than the capacity of the Norman and
O’Reilly (2003) cortical familiarity model (which does not oscil-
late inhibition and uses a simple Hebbian learning rule to adjust
weights). Future work will explore whether the oscillating-
algorithm familiarity model can account for the full range of
list-learning interference results that were previously addressed
using the Norman and O’Reilly familiarity model (e.g., the null
recognition list strength effect observed by Ratcliff et al., 1990).

Another important future direction for the model is to simulate
results from the classical paired-associates learning literature. As
mentioned above, abstract mathematical models have successfully
simulated data from the AB–AC paired-associates learning para-
digm (e.g., Barnes & Underwood, 1959) without positing any kind
of trace weakening process (Mensink & Raaijmakers, 1988). Fur-
thermore, there are certain facets of this data space that appear to
directly contradict the predictions of unlearning models. For ex-
ample, associative unlearning theory (Melton & Irwin, 1940) pre-
dicts that, in AB–AC learning paradigms, learning a new associ-
ation (e.g., Soldier–Army) should directly cause forgetting of
previously learned associations involving that cue (e.g., Soldier–
Gun). However, several analyses have found that—across
stimuli—learning of the second association is statistically indepen-
dent from forgetting of the first association (for discussion of this

point, see Chappell & Humphreys, 1994; Greeno, James, DaPolito,
& Polson, 1978; Kahana, 2000; Martin, 1971; Mensink & Raaij-
makers, 1988). It will be very informative to see how well our
model can account for this AB–AC independence finding and
others like it.54

Finally, we also plan to use the model to address other psycho-
logical phenomena (outside of the domain of declarative memory)
that may involve competitor weakening, including negative prim-
ing effects in object perception (e.g., DeSchepper & Treisman,
1996) and backward inhibition effects in task switching (e.g., Mayr
& Keele, 2000).

Conclusions

In the simulations presented in this article, we showed that the
oscillating-inhibition model can account for key qualitative regu-
larities in the RIF data space (e.g., more RIF for strong vs. weak
competitors). The model also provides a principled account of
boundary conditions on these regularities. To our knowledge, this
is the first computational model to address the full set of RIF
phenomena discussed here. However, we also realize that the
model has a long way to go before it provides a comprehensive
account of how the brain gives rise to RIF. As discussed in the
Challenges for the Model section above, we need to incorporate
significantly more neurobiological detail in the model (e.g., we
need to explicitly simulate inhibitory interneurons to account for
target–competitor integration effects). Also, in addition to testing
behavioral predictions of the model, we need to start testing neural
predictions (e.g., regarding how target and competitor activation
should be linked to theta phase). Overall, we believe that a con-
vergent approach using behavioral constraints, neural constraints,
and functional constraints (showing that our model learns effi-
ciently relative to other algorithms) will result in the most progress
toward solving the puzzle of RIF.

54 Prior simulation results from Mensink and Raaijmakers (1988) and
others suggest that gradual drift in contextual representations is a major
cause of forgetting in classical paired-associates learning paradigms. As
such, properly simulating results from these paradigms may require us to
replace our static tag contextual representations with contextual represen-
tations that evolve over time. For discussion of mechanisms of contextual
drift, see Howard and Kahana (2002), and for discussion of how these
mechanisms could be implemented in neural network models, see Norman
et al. (in press).
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Appendix A

Algorithm Details

This Appendix provides details of how the oscillating learning
algorithm was instantiated in the simulations reported here. For
more information on the oscillating algorithm and its functional
properties, see Norman, Newman, Detre, and Polyn (2006).

Our oscillating-algorithm simulations were implemented using a
modified version of O’Reilly’s Leabra algorithm (O’Reilly &
Munakata, 2000). Apart from a small number of changes listed
below (most importantly, relating to the weight update algorithm
and how we added an oscillating component to inhibition), all
other aspects of the algorithm used here are identical to Leabra.
For a more detailed description of the Leabra algorithm, see
O’Reilly and Munakata (2000). Readers who are interested in
running simulations are strongly encouraged to consult the simu-
lation files posted at http://compmem.princeton.edu (in addition to
this Appendix). Parts of this Appendix are adapted from Appendix
A of Norman and O’Reilly (2003).

Pseudocode

The pseudocode for the algorithm that we used is given here,
showing how the pieces of the algorithm (described in more detail
in subsequent sections) fit together. Parts of the learning algorithm
that differ from the standard Leabra procedure are marked in
boldface.

Outer loop: Iterate over events (trials) within an epoch. For each
event, settle over time steps of updating:

1. At start of settling, for all units,
(a) Initialize all state variables (activation, Vm, etc.).
(b) Apply external patterns.

2. During each time step of settling,
(a) Compute excitatory net input (ge, Equation A3).
(b) Compute k-winners-take-all (kWTA) inhibition gi

kWTA for
each layer, based on gi

	 (Equation A6):
i. Sort the n units into two groups based on gi

	: top k and
remaining k � 1 to n.

ii. Set inhibitory conductance gi
kWTA between gk

	 and gk�1
	

(Equation A5).
(c) Compute overall inhibition by combining kWTA inhi-

bition with an oscillating component (Equations A7 and
A8).

(d) Compute point neuron activation combining excitatory in-
put and inhibition (Equation A1).

3. Update the weights (based on linear current weight values), for
all connections:
(a) Compute weight changes according to the oscillating

algorithm (Equation 4 in main text).
(b) Increment the weights and apply contrast enhancement

(Equation A9).

Point Neuron Activation Function

As per the Leabra algorithm, we explicitly simulated only ex-
citatory units and excitatory connections between these units; we
did not explicitly simulate inhibitory interneurons. As described in

the main text (and detailed below), inhibition was controlled by
means of a kWTA inhibitory mechanism (Minai & Levy, 1994;
O’Reilly & Munakata, 2000), which was modified by an
oscillating-inhibition component.

To simulate excitatory neurons, Leabra uses a point neuron
activation function that models the electrophysiological properties
of real neurons while simplifying their geometry to a single point.
The membrane potential Vm is updated as a function of ionic
conductances g with reversal (driving) potentials E as follows:

dVm�t�

dt
� 
�

c

gc�t�g� c�Ec � Vm�t��, (A1)

with three channels (c) corresponding to e excitatory input, l leak
current, and i inhibitory input. Following electrophysiological con-
vention, the overall conductance is decomposed into a time-
varying component gc(t) computed as a function of the dynamic
state of the network and a constant g�c that controls the relative
influence of the different conductances. The equilibrium potential
can be written in a simplified form by setting the excitatory driving
potential (Ee) to 1 and the leak and inhibitory driving potentials (El

and Ei) to 0:

Vm
� �

geg� e

geg� e � glg� l � gig� i
, (A2)

which shows that the neuron is computing a balance between
excitation and the opposing forces of leak and inhibition. This
equilibrium form of the equation can be understood in terms of a
Bayesian decision-making framework (O’Reilly & Munakata,
2000).

The excitatory net input/conductance ge(t) is computed as a
function of sending activations times the weight values. This value
is computed separately for each projection k coming into a unit
(where a projection is the set of connections coming from a
particular layer):

gek�t� �
1

�k

rk�
p

rp

xiwij�k . (A3)

In the above equation,
1
�k

is a normalizing term based on the

expected activity level of the sending projection, and rk is a
projection-scaling factor that determines the influence of this par-
ticular projection relative to all of the other projections. We discuss
these projection-scaling factors and their significance in the
Projection-Scaling Parameters section below. The overall excita-
tory net input value for a unit ge(t) is computed by summing
together all of the projection-specific gek

(t) terms.
Cue-related inputs (i.e., inputs from the stimulus pattern that are

directly applied to the network) are factored into the computation
of ge(t) just like any other projection. These inputs are applied
starting on the first time step of the trial and stay on (at a constant
value) throughout the trial.
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The inhibitory conductance is computed by combining the level
of inhibition computed by kWTA with an oscillating component,
as described in the next two sections. Leak is a constant.

Activation communicated to other cells (yj) is a thresholded (	)
sigmoidal function of the membrane potential with gain parameter �:

yj�t� �
��Vm�t� � 	��

���Vm�t� � 	�� � 1)
, (A4)

where [x]� is a threshold function that returns 0 if x � 0 and x if
x � 0. This sharply thresholded function is convolved with a
Gaussian noise kernel (� � .005), which reflects the intrinsic
processing noise of biological neurons.

k-Winners-Take-All Inhibition

Leabra uses a kWTA function to achieve sparse distributed
representations (cf. Minai & Levy, 1994). kWTA is applied sep-
arately to each layer. A uniform level of inhibitory current for all
units in the layer is computed as follows:

gi
kWTA�t� � gk�1

	 � q�gk
	 � gk�1

	 � , (A5)

where 0 � q � 1 is a parameter for setting inhibition between the
upper bound of gk

	 and the lower bound of gk�1
	 . These boundary

inhibition values are computed as a function of the level of
inhibition necessary to keep a unit right at threshold:

gi
	 �

ge
*g� e�Ee � 	� � glg� l�El � 	�

	 � Ei
, (A6)

where ge
* is the excitatory net input.

In the basic version of the kWTA function used here, gk
	 and

gk�1
	 are set to the threshold inhibition values for the kth and k �

1st most excited units, respectively. Thus, Equation A5 sets inhi-
bition such that k units are above threshold and the remainder are
below threshold. We should emphasize that, when membrane
potential is at threshold, unit activation in the model equals .25. As
such, the kWTA algorithm places a firm upper bound on the
number of units showing activation � .25, but it does not set an
upper bound on the number of weakly active units (i.e., units
showing activation between 0 and .25). The k parameter in cortex
was set to match the number of active units per layer in the input
patterns (k � 4), and the k parameter in hippocampus was set to
match the number of active units in the pretrained conjunctive
representations (k � 4 also).

Inhibitory Oscillation

The overall inhibitory current gi(t) is computed by combining
the level of inhibition computed by kWTA gi

kWTA(t) with an
oscillating inhibitory component gi

O(t):

gi�t� � gi
kWTA�t� � gi

O�t�. (A7)

The oscillating inhibitory current, gi
O(t), is set to zero for the

initial part of the trial to give the network time to settle. A
parameter Oonset determines the number of time steps to wait

before starting the inhibitory oscillation, such that if t � Oonset,
then gi

O(t) � 0, and if t � Oonset, then gi
O(t) is set according to the

following equation:

gi
O�t� � �Omax � Omin

2 � sin�2�

OT
t�

2�

360
O�� � �Omax � Omin

2 � .

(A8)

In the above equation, OT, O�, Omax, and Omin are the period (in
time steps), phase offset (in degrees), maximum magnitude, and
minimum magnitude of the oscillating inhibitory current, respec-
tively. We used different parameters for the hippocampal inhibi-
tory oscillation and the cortical (i.e., associate-layer and item-
layer) inhibitory oscillation. Omax, Omin, and O� for hippocampus
and cortex were iteratively adjusted (by hand) to maximize qual-
itative fit to existing retrival-induced forgetting data. These pa-
rameters are listed in Table A1, and the oscillations are plotted in
Figure A1. Note that the hippocampal and cortical oscillations
have the same period but that the cortical oscillation is slightly
offset in phase relative to the hippocampal oscillation (it starts
earlier and peaks earlier).

The total length of each trial was 127 time steps. Factoring in the
delay in the start of the oscillation and the 80-time-step period of
the oscillation, 127 item steps is enough time for inhibition to be
oscillated once from its normal value up to the high-inhibition
value, then down to the low-inhibition value, then back to normal.

Weight Adjustment

At each time step (starting at the onset of the hippocampal
inhibitory oscillation), weight updates were calculated using Equa-
tion 4 (see the main text):

dWij � lrate�Xi�t � 1�Yj�t � 1� � Xi�t�Yj�t��,

where lrate takes on a positive value (ε) when the inhibitory
oscillation is moving toward its midpoint value and a negative
value (�ε) when the inhibitory oscillation is moving away from its
midpoint value. Figure A1 illustrates these lrate changes.A1 The ε
learning rate parameter was set to 0.05 for connections within the
cortical network (i.e., item–item, item–associate, associate–item,
and associate–associate); ε was set to 2.00 for connections between
the cortical network and the hippocampal network. Note that,
while weight updates were calculated at each time step during the
trial, these weight updates were not applied until the end of the
trial.A2

A1 Note that lrate changes are aligned with the peak and trough of the
hippocampal inhibitory oscillation instead of the cortical inhibitory oscil-
lation. We experimented with several different ways of aligning lrate
changes, and this was the configuration that worked best.

A2 Another difference between our algorithm and the standard imple-
mentation of Leabra is that our algorithm does not include adjustable bias
weights, whereas the standard version of Leabra does include these
weights.

(Appendixes continue)

951A NEURAL NETWORK MODEL OF RIF



Weight Contrast Enhancement

Leabra includes a weight contrast enhancement function that
magnifies the stronger weights and shrinks the smaller ones in a
parametric, continuous fashion. This contrast enhancement is
achieved by passing the linear weight values computed by the
learning algorithm through a sigmoidal nonlinearity of the follow-
ing form:

ŵij �
1

1 � � wij

�1 � wij
��� , (A9)

where ŵij is the contrast-enhanced weight value and the sigmoidal
function is parameterized by an offset � and a gain � (standard
defaults of 1.25 and 6.00, respectively, were used here). Note that
contrast-enhanced weight values ŵij are used for activation prop-
agation, but weight adjustments are applied to the linear weight
values wij. All of the specific weight values mentioned in the
article are contrast-enhanced values.

Projection-Scaling Parameters

Table A2 lists the scaling parameters that determine the
relative influence of different projections within the model (see
Equation 7 for a precise description of how these projection-
scaling parameters influence excitatory net input values). Al-
though the complexity of the model makes it impossible to
exhaustively search the space of scaling-parameter settings, we
did manage to search through a very wide range of scaling-
parameter configurations before settling on this particular set of
parameters. The most important aspects of this particular pa-
rameter set, with regard to generating the dynamics outlined in
the main part of the article, were our use of high projection-
scaling values for recurrent projections (in both hippocampus
and cortex) and our use of a high scaling value for the item-
to-hippocampus projection.

With regard to recurrent projections, using a high projection-
scaling value for recurrents helps to ensure well-delineated pop-up
of competitors during the low-inhibition phase—a limited number
of units pop up strongly, and most units do not pop up at all. When
a lower projection-scaling value is used for recurrents, competitor
pop-up is much more diffuse (i.e., we tend to observe weak pop-up
of a large number of units). In the limiting case, if the recurrents
are too weak, lowering inhibition causes all of the units in the layer
to start to activate; this diffuse wave of activation can trigger a
seizure in the network.

With regard to item-to-hippocampus projection, using a large
scaling value on this projection (relative to the associate-to-
hippocampus projection) is important for getting robust pop-up
of hippocampal traces corresponding to independent cues. For
example, consider what occurred in Simulation 1.2: In this
simulation, the competitor item (2) was paired with two asso-
ciates (A–2 and C–2) at study. When the model was cued with
a partial version of the target (A–1) at practice, Item 2 popped
up as a semantic competitor. Using a strong item-to-
hippocampus projection-scaling factor ensures that semantic
pop-up of Item 2 will trigger pop-up of all of the hippocampal
traces from the study phase that contain Item 2 (i.e., both A–2
and C–2). Without this strong item-to-hippocampus scaling
factor, the hippocampal representation of A–2 pops up (because
it receives support from both the associate layer and the item
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Figure A1. Illustration of how inhibition was oscillated on each trial.
At each time step, the hippocampal inhibitory oscillation value was
added to the inhibition value computed by the k-winners-take-all
(kWTA) algorithm for the hippocampal layer. Likewise, the cortical
inhibitory oscillation value was added to the inhibition values computed
by the kWTA algorithm for the associate and item layers. The graph
also shows how the sign of the learning rate was varied over the course
of the inhibitory oscillation.

Table A1
Parameters Defining the Hippocampal and Cortical Inhibitory
Oscillations

Layer Omax Omin O� OT Oonset

Hippocampus 2.1 �2.7 �200 80 47
Associate and item 1.8 �1.2 �180 80 39

Table A2
Projection-Scaling Parameters for the Model

From To Scale

Item Hippocampus 2.00
Associate Hippocampus 0.75
Hippocampus Hippocampus 1.50
Context Hippocampus variable
Hippocampus Item 0.50
Associate Item 0.66
Item Item 1.25
Hippocampus Associate 0.50
Item Associate 0.66
Associate Associate 1.25
Hippocampus Context 1.00

Note. These scaling factors determine the relative influence of the dif-
ferent projections coming into a layer.
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layer at practice), but the hippocampal representation of C–2
does not.

Other Parameters

All of the parameters (governing underlying model dynamics)
shared by the oscillating algorithm and Leabra were set to their
Leabra default values, except for stm_gain (which determines the

overall influence of external inputs that are applied to the network,
relative to the influence of collateral connections between units), q
(the parameter in Equation A5 that determines whether kWTA
places the inhibitory threshold relatively close to the target units or
relatively close to competing units), and 
 (the time-constant
parameter in Equation A1 that governs updating of the membrane
potential). stm_gain was set to 0.6, q was set to 0.325, and 
 was
set to .15.

Appendix B

Details of Semantic Pretraining

This appendix contains pseudocode describing how weights in
the cortical network were pretrained (for each simulated partici-
pant) prior to the start of the simulated retrieval-induced forgetting
(RIF) experiment. The goal of this process was to implant a set of
associate–item pairings into the cortical network (to simulate pre-
experimental experience with the stimuli used in the RIF experi-
ment).

1. Pretraining representations in the associate layer:
(a) Initialize all associate-layer recurrent connections by set-

ting them to .50.
(b) For each associate-layer pattern that is used in the simula-

tion, set weights between coactive units in the associate
layer to .95.

2. Pretraining representations in the item layer:
(a) Initialize all item-layer recurrent connections by setting

them to .50.
(b) For each item-layer pattern that is used in the simulation

(e.g., Apple),

i. Sample a semantic strength value for that item from a
uniform distribution with mean � and half-range �.
These � and � parameters can vary across simulations,
and � can also vary across conditions within a simula-
tion (e.g., in Simulation 2).

ii. Set weights between coactive units in the item layer to
that item’s semantic strength value.

3. Pretraining associate–item and item–associate connections:
(a) Initialize all item–associate and associate–item connections

by setting them to .50.
(b) For each associate–item pairing in the pretraining set, set

weights between coactive pairs of item-layer and associate-
layer units (i.e., pairs comprising one active item-layer unit
and one active associate-layer unit) to the item’s semantic
strength value.
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