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The authors present the context maintenance and retrieval (CMR) model of memory search, a generalized
version of the temporal context model of M. W. Howard and M. J. Kahana (2002a), which proposes that
memory search is driven by an internally maintained context representation composed of stimulus-related
and source-related features. In the CMR model, organizational effects (the tendency for related items to
cluster during the recall sequence) arise as a consequence of associations between active context elements
and features of the studied material. Semantic clustering is due to longstanding context-to-item associ-
ations, whereas temporal clustering and source clustering are both due to associations formed during the
study episode. A behavioral investigation of the three forms of organization provides data to constrain
the CMR model, revealing interactions between the organizational factors. Finally, the authors discuss
the implications of CMR for their understanding of a broad class of episodic memory phenomena and
suggest ways in which this theory may guide exploration of the neural correlates of memory search.
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The free-recall paradigm has had an important role in the
development of theories of memory search, and research in this
domain has tended to follow two threads. The first deals with
organization; the free-recall paradigm reveals structure and orga-
nization in memory through the ways items tend to cluster in recall
sequences (for a review, see Puff, 1979). When items are recalled
successively, it indicates that they are somehow related or struc-
turally connected in the memory system. The second thread deals
more directly with the memorability or availability of individual
items in memory, often in terms of the sort of processing the item
received. In these studies, theoretical attention focuses on whether
particular items were recalled and not on the order of those recalls.

These studies have dominated the recent literature and tend to
employ a variant of the free-recall paradigm designed to minimize
organizational influences, through the use of a single trial and
randomly chosen items (Battig & Bellezza, 1979). However, re-
cent work has shown that even in the single-trial free-recall para-
digm, one can see substantial and reliable organizational influ-
ences, both in terms of the temporal contiguity of successively
recalled items (Kahana, 1996) and in terms of the semantic relat-
edness of the studied items (Howard & Kahana, 2002b).

Models of the free-recall paradigm have tended to ignore order
information as a simplifying assumption (Brown, Neath, & Chater,
2007; Wixted & Rohrer, 1993). However, a recent trend in the
modeling literature has brought these organizational principles to
center stage. The temporal context model (TCM) of Howard and
Kahana (2002a) is a formal computational model of the human
memory system designed to explain the phenomena of temporal
organization. By this model, a slowly changing internal context
representation is associated with each of the studied items and is
then used to guide memory search. TCM is a model of the
interactions between context and content, but it lacks the machin-
ery to explain the important role of nontemporal factors in memory
retrieval, such as semantic and source information (e.g., Howard &
Kahana, 2002b; Hintzman, Block, & Inskeep, 1972). We general-
ize TCM to model the semantic similarity relations between words,
as well as the influence of source context on the recall process. We
refer to this generalized model as the context maintenance and
retrieval (CMR) model. According to the CMR model, the most
obvious behavioral manifestation of organization is the clustering
of recalled items along a dimension of similarity. This similarity
may arise because of the longstanding associative relations be-
tween studied items (giving rise to semantic organization), or
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because of the similarity structure of an internal context represen-
tation that is associated with the studied items during the learning
episode (giving rise to episodic clustering). A fine-grained analysis
of clustering behavior reveals the structure of the representations
in the memory system and provides insights into the dynamics of
memory search. Before describing the machinery of CMR, we first
review a range of organizational phenomena in the human memory
literature.

Clustering and the Organization of Memory

Early studies of organization focused on clustering by the se-
mantic category of the words (Bousfield & Sedgewick, 1944;
Bousfield, 1953; Cofer, Bruce, & Reicher, 1966). While these
early studies focused on the clustering of words drawn from
taxonomic categories, even the weaker associations between ran-
domly chosen words influence the output order of recalled items
(Howard & Kahana, 2002b). These studies characterize semantic
clustering related to the longstanding associations between words.

Kahana (1996), in reanalyzing a number of classic free-recall
studies, showed that temporal clustering seems to be a ubiquitous
property of the recall sequences (see also Kahana, Howard, &
Polyn, 2008). This form of episodic clustering is perhaps best
exemplified by the contiguity effect, the observation that items
studied in neighboring list positions tend to be reported succes-
sively during the recall period, regardless of their degree of se-
mantic association (Kahana, 1996). Kahana (1996) introduced a
conditional response probability analysis as a function of lag (or
lag-CRP) to show that the probability of successively recalling two
items falls off smoothly as the temporal distance (lag) between
them increases (see also Howard & Kahana, 1999; Hulme, Stuart,
Brown, & Morin, 2003; Lewandowsky, Brown, & Thomas, in
press; Unsworth, 2008; Ward, Woodward, Stevens, & Stinson,
2003). Below, we look closer at this phenomenon, including at a
recently characterized tendency to recall temporally distant items
early in the recall sequence (Farrell & Lewandowsky, in press).

Another form of episodic clustering is observed on the basis of
associations between the studied items and their source character-
istics. The earliest observations of source clustering arose from
within-list manipulations of the modality of the studied word
(auditory or visual). Murdock and Walker (1969) showed that,
along with the superior recall of the auditory items, words asso-
ciated with each modality clustered together during the recall
sequence (see also Hintzman et al., 1972). Following the demon-
stration of organization by modality, researchers found that a
number of associated source characteristics could induce cluster-
ing in the free-recall paradigm. These include similarities in shape
or orientation of a picture of an item (Frost, 1971), the gender of
the presenter’s voice, the typeface of the word (Hintzman et al.,
1972; Nilsson, 1974), and the spatial location of a word on a screen
(Curiel & Radvansky, 1998).

Just as participants may organize material according to external
source features, a similar kind of organization might be expected
on the basis of similarity in internal representations activated
during processing (i.e., internal source features). For example,
Cohen, Dunbar, and McClelland (1990) proposed that different
processing tasks have distinct task representations that guide the
cognitive system to flexibly process incoming stimuli in accor-
dance with task demands. In the Stroop task, a task representation

for “color naming” would allow one to name the color of ink in
which a word was written, instead of reading the text of the word.
The idea that task is part of context in memory has been advanced
by a number of researchers to explain a diverse array of cognitive
phenomena (e.g., Kolers & Ostry, 1974; Kolers & Roediger, 1984;
Braver et al., 2001; Botvinick & Plaut, 2002). If internal task
representations are associated with the features of items that are
studied in their context, one would expect to observe clustering by
orienting task during memory search for the studied items. Polyn
(2005) reported direct evidence for organization by internal source
features in a continual distraction free recall paradigm (see also
Polyn, Norman, & Kahana, 2008), in which each studied item was
encoded with one of two orienting tasks (a size judgment and a
pleasantness judgment). In lists where half of the items were
studied with each task, task clustering was observed during recall.

Although these distinct forms of clustering have been studied in
separate experiments, it is easy to show that any free-recall para-
digm will give rise to multiple forms of clustering. However, little
is known about how different forms of clustering interact during
recall. The CMR model is designed to explain simultaneous orga-
nization by multiple factors (semantic, temporal, and source) and
suggests that two principles can explain clustering behavior in the
free-recall paradigm: First, the principle of clustering by similarity
states that clustering along a dimension of similarity arises when
items are associated with similar contextual states, because the
recall process is driven by the current state of the context repre-
sentation. Second, the principle of clustering by isolation states
that a sudden shift in context (caused by a disruptive cognitive
event) can isolate a set of items from the items studied prior to the
disruptive event. This causes the isolated items to cluster together in
the recall sequence (relative to a condition without such a disruptive
event). Here, we explore the possibility that such a disruptive
context shift can be triggered by the detection of a sufficiently
novel representation (e.g., a change in orienting task causing a new
task representation to become active).

The idea that novelty is treated specially by the system has been
used in a number of models of human memory. One prominent
example arises from the work of Donchin and colleagues (Donchin
& Coles, 1988; Fabiani & Donchin, 1995; Karis, Fabiani, &
Donchin, 1984), who proposed that a context-updating process is
engaged whenever one encounters an item that mismatches previ-
ous items on some salient dimension and used this theory to
explain distinctiveness effects in free recall. Similar mechanisms
have been proposed to explain distinctiveness effects (as well as
the primacy effect) in serial recall (Brown, Preece, & Hulme,
2000; Farrell & Lewandowsky, 2002; Lewandowsky & Farrell,
2008). Recently, Sahakyan and Kelley (2002) showed that if a
period of elaborative mental activity (e.g., imagine what you
would do if you were invisible) is inserted between two studied
lists, one observes both a cost to memorability of the material
studied prior to the elaborative activity and a benefit to the mem-
orability of material studied after the activity. It is quite possible
that performing this novel task disrupted temporal context, making
the items studied in the first list less accessible and reducing the
degree of interference between these items and the items in the
second list. This hypothesis is quite consistent with their conten-
tion that the elaborative activity causes a shift in inner mental
context and that a mismatch between inner mental context during
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retrieval and inner mental context during study reduces accessi-
bility of the studied material.1

The Spotlights of Memory

The CMR model proposes that the process of memory search is
driven by a set of internally maintained context representations
that are used to probe associative weights to reactivate the features
of studied items. Each maintained context representation plays the
role of a spotlight, sweeping across a stage on which a set of items
has been placed (see Figure 1). For this example, imagine that
some of the items have been studied with Source A and others with
Source B. The strength of the context representation determines
the overall intensity of the spotlight, and the set of associative links
to the item features determines the intensity with which it illumi-
nates any one item. The intensity with which each item is illumi-
nated directly influences its likelihood of being recalled in a
competition in which all of the items compete in parallel to have
their features reinstated in the system. The specific item recalled
brings with it retrieved context, which alters the context represen-
tation (shifting the spotlights), and another recall competition
ensues. In other words, although the recall process is fundamen-
tally parallel, the full recall period comprises a series of these
recall competitions. Recall in the CMR model is perhaps best
described as an iterative parallel process, where the result of each
recall competition affects the course of the subsequent competi-
tion.

Figure 1 contains two spotlights: one for temporal context
(illuminating items studied nearby in time and weakening with
temporal distance) and one for source context (illuminating items
studied with the same source). The set of items illuminated by each
spotlight depends on its current state (i.e., the currently active
context representation). If the context representation of Source A
is active, then items studied with Source A are illuminated. The
state of the context representation is determined in part by the
context retrieved by the most recently recalled item. If an item
studied with Source B is recalled, then the source context spotlight
shifts to illuminate Source B items. Clustering occurs when a
spotlight is trained on a particular set of items for more than one
recall attempt. Recalled items trigger the retrieval of associated
temporal and source information, which keeps the spotlights
trained on items studied in a similar temporal context and source
context. This raises the likelihood that the next recalled item will
be from a nearby list position (giving rise to temporal clustering)
or from the same source (giving rise to source clustering). As recall
proceeds, context reinstatement from retrieved items causes the
spotlights to sweep over the list, until time runs out or no more
items can be retrieved.

The item information activated in temporal context concurrently
illuminates the semantic associates of the studied items, because of
the longstanding associations connecting the context features to
semantically related items (this aspect of the spotlights is not
graphically represented in Figure 1 but receives further attention
below). The spotlight metaphor is useful for gaining an intuition
regarding the associative basis of clustering in the CMR model.
Below, we discuss how a second mechanism (novelty-related
context disruption) may also produce clustering.

Precis

Memory search in free recall is best understood as a multiply
constrained process; the probability of recalling an item and the
order in which items are recalled are simultaneously influenced by
semantic, temporal, and source information. In the following sec-
tions, we present simulations of a set of experiments using the
immediate free recall (IFR) paradigm. First, we examine the re-
sults of a new experiment in which we manipulate the source
context associated with studied items within list (details of this
paradigm are provided in Appendix A). Then, we examine the
results of two classic studies of free recall, reported by Murdock
(1962) and Murdock and Okada (1970). The model accounts
for the benchmark results described by these studies, regarding the
changes in the serial position curve with list length and the expo-
nential growth of inter-response times (IRTs) during recall. It also
provides a natural framework for understanding the multiple or-
ganizational influences giving rise to clustering during memory
search.

Before presenting these results, we begin with a description of
the components and processes of the CMR model, detailing how
semantic, temporal, and source information simultaneously influ-
ence recall dynamics. This is followed by four simulation analyses,
which examine the dynamics of the model across three free-recall
paradigms. Simulation Analysis I examines the simultaneous or-
ganization of memory search along semantic, temporal, and source
dimensions, by examining clustering effects for each of these three
factors. Both the data and model demonstrated reliable organiza-
tional effects by each of the three factors. Simulation Analysis II
examines the interaction between temporal organization and
source organization. The CMR model captures the finding of
source organization between both nearby and remote list items, but
with much stronger source clustering for items studied in a nearby
temporal context. A comparison of different variants of the model
suggests that associations between source context and item fea-
tures are critical to explain source clustering between remote
items. Simulation Analysis III examines memory performance as a
function of serial position in the studied list. The CMR model is
used to explain serial position effects across a list-length manip-
ulation described by Murdock (1962). The model also explains the
serial position effects of a within-list source context manipulation.
The model suggests that a task-shift related disruption of temporal
context is important for understanding the perturbations in the
serial position curve because of the within-list source context
manipulation. Simulation Analysis IV examines IRTs between
successively recalled items. The CMR model is used to explain
IRT effects in a study described by Murdock and Okada (1970).
The model also explains the effects of all three organizational
factors (semantic, temporal, and source) on IRTs. The CMR model
predicted that participants should show an increased latency to
make recall transitions between items associated with different
sources (tasks, in this case), which was confirmed upon examina-
tion of the empirical data.

1 They further proposed that a similar mechanism underlies the reduced
accessibility of materials cued to be forgotten in the directed-forgetting
paradigm (Geiselman, Bjork, & Fishman, 1983).
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The CMR Network Model of Human Memory Search

Context-Based Models of Free Recall

The notion of context considered here is inspired by the stimulus
sampling theory of Estes (1959) and Bower (1972), as well as the
TCM of Howard and Kahana (2002a). We conceive of context as
a pattern of activity in the cognitive system, separate from the
pattern immediately evoked by the perception of a studied item,
that changes over time and is associated with other coactive
patterns. Along with the theory of Howard and Kahana comes the
notion that the elements of context are activated by some stimulus
or event, tend to stay active past the time this stimulus leaves the
environment, and are associated with the features of studied ma-
terial. The consequences of this are explored below. Although it is
clear that static external (e.g., environmental) features can also
play the role of context (Bjork & Richardson-Klavehn, 1989;
Murnane, Phelps, & Malmberg, 1999; Smith, 1988), for the pur-
poses of the present treatment, we restrict our consideration to
context as an internally maintained stimulus.

The CMR model builds upon the TCM framework (Howard &
Kahana, 2002a), which describes a mechanism for representing
temporal context and the dynamics of how this representation
updates and is associated with the representations of the studied
items. Finally, it describes how, given a particular context state,
one can calculate the degree of support for each of the items in a
lexicon having been in the most recent list. Howard and Kahana
(2002a) used the choice-probability framework of Luce (1959) as
a simple decision mechanism. Recently, Sederberg, Howard, and
Kahana (2008) described a variant model, TCM-A, which pairs
TCM with a dynamical system capable of modeling a many-
dimensional choice problem (Usher & McClelland, 2001), used to
model the decision process leading to a recall. The CMR model
described below uses the decision rule of TCM-A. Although
TCM-A provides an elegant explanation of temporal clustering

and the effects of distraction on memory search, it does not predict
the existence of semantic clustering or other forms of episodic
clustering, nor does it address the interactions between these
factors.

As mentioned above, CMR is a generalized version of TCM,
designed to capture the broader set of organizational effects ob-
served in free recall. Semantic organization arises because when an
item is recalled, it retrieves an associated temporal context repre-
sentation. This retrieved representation contains a blend of all the
temporal context representations with which this particular item
has ever been associated. Semantic associates of a particular item
have historically tended to appear in similar contexts, so a recalled
item’s retrieved temporal context is affiliated with that item’s
semantic associates and tends to favor their subsequent retrieval.
This addition of semantic information to the model is consistent
with the principles of TCM and allows the model to explain a
number of aspects of the behavioral data.

The true generalizing principle of the CMR model is that the
context-related mechanisms developed for temporal context apply
to any sort of context, such as the physical source characteristics of
an item or the internal source context of an item (e.g., task).
Associations between the features of studied items and this ex-
panded set of context sub-regions allows the model to explain the
simultaneous organization of studied material along multiple di-
mensions.

The Structure and Dynamics of the Model

Representational structure. In CMR, any given environmental
stimulus is composed of some number of features, and the pres-
ence of that feature in the environment corresponds to the activa-
tion of the corresponding element in the feature layer (Bower,
1967; Underwood, 1969). Figure 2 depicts the basic structure of
the model. There are two representational sub-areas: the feature

temporal
context

source
context

Figure 1. Context as the spotlight of memory. Here, we envision context as a set of spotlights, each shining
into memory. Each lamp can illuminate a different subset of memories. The temporal lamp always illuminates
a set of traces that were stored nearby in time (the light becoming more diffuse for more distant items). The
source lamp illuminates memories that were associated with similar source characteristics. The context retrieved
upon successful recall of an item may swing each lamp to illuminate a different set of items.
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layer F and the context layer C. Studied items activate a represen-
tation fi in F, where the subscript i indexes the list position of the
item. In other words, fi is a vector representation of the features of
the studied item, which consists of both item features and source
features concatenated into a single vector representation (f � f item

� f source). For simplicity, we follow the tradition of TCM in
treating the items as orthonormal on Fitem (each item has a localist
representation on F). Similarly, different sources are orthonormal
on Fsource. The state of the context layer at a given list position is
ci; the context layer is subdivided into elements corresponding to
temporal context and source context (c � ctemp � csource). In the
TCM framework, temporal context was represented as a vector t,
which corresponds to ctemp in the CMR framework. The F layer
and the C layer interact through two associative matrices: MFC,
which describes the strengths of the feature-to-context associa-
tions, and MCF, which describes the strength of the context-to-
feature associations. A given element in an associative matrix
describes the connection strength between a particular feature
element and a particular context element.

Whereas we only consider two classes of features in the current
investigation (item and source, where the source considered is
related to the task performed during study), the CMR framework
can be easily extended to represent any aspect of a studied stimulus
(simply by adding extra elements corresponding to the features in
question, e.g., acoustic or orthographic properties of a word or
features of the local environment).

Updating temporal and source context. When a feature repre-
sentation is activated in F (following an item presentation during
study or the reactivation of an item representation during recall),
information about the event is integrated into the context repre-
sentation; the inserted information weakens whatever information
was already resident in context, such that the global state of the
context representation changes slowly over time. Prior to the start
of a trial, each context sub-region is initialized as a vector of unit
length; this represents whatever information was present in context
prior to the list.

Whenever a representation is activated in F, the input to C is
determined as follows:

cIN � MFCfi. (1)

The vector cIN represents the net input to the context layer. As with
c, cIN consists of two sub-regions, corresponding to temporal and
source elements. Each of the two sub-components of cIN are
normalized to be of unit length prior to updating context.

Given cIN, context integration proceeds as follows:

ci � �ici � 1 � �cIN, (2)

where

� i � �1 � �2��ci�1 � cIN)2�1]��(ci�1 � cIN). (3)

Here, � is a scaling parameter that determines how much new
information (cIN) is placed in context, and �i weakens the current

context (C)

MCF (guide search)

the 
environment

decision
competition

source contexttemporal context

features (F)
item features source features

size animacyboat dogcatapple

temp. context
to

item features

source context
to

item features

item features
to

temp. context

source features
to

temp. context

item f.
to

source c.

source f.
to

source c.

MFC (update context)

longstanding
semantic

associations

Figure 2. The basic structure of the context maintenance and retrieval model. Item features can update the state
of context via an associative matrix MFC. The context representation itself has maintenance capabilities, which
allows context information to be integrated over long temporal intervals. During recall, the state of context can
bias the retrieval competition toward items associated with the active context elements, through the associative
matrix MCF. When a particular item is recalled, its features are reactivated; it can then update context to bias
further retrieval attempts.
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state of context (ci�1) such that the overall level of contextual
activation remains constant (for details concerning the form of this
expression, see Howard & Kahana, 2002a). The above updating
process is applied separately to Ctemp and Csource. Each of these
subdivisions of context has a distinct drift-rate parameter (�temp

and �source), such that the two pools of units can update at different
rates. The �temp parameter was allowed to vary between the study
(�enc

temp) and recall periods (�rec
temp), reflecting the hypothesis that the

rate of context integration may be different, depending upon
whether a stimulus was externally presented or recalled. To sim-
plify matters, in the current simulations, the �source parameter was
fixed between study and recall.

The �enc
temp and �rec

temp parameters are important in determining the
nature of temporal clustering: higher values for these parameters
(with other parameters held constant) increase the degree of tem-
poral clustering in the model. The �source parameter is important
in determining the degree of source clustering. When there is a
shift in task, a large value causes source context to update
quickly, increasing the magnitude of the source clustering effect
(see Table 3).

Novelty-related context disruption. In the introduction, we
suggested that the sudden appearance of a novel representation in
one context sub-region (such as a shift from one task to another)
triggers a system-wide event that causes other context representa-
tions to update, by increasing the rate at which new information is
integrated. This disrupts the accessibility of all items studied prior
to the novel event, because the temporal context associated with all
of those prior items has been pushed out in favor of novel infor-
mation.

The rate at which context integrates new information is related
to the overall novelty or salience of that information. When the
model experiences a large shift in source context, as when the
participant must switch from one task to another during the study
period, all context regions (here, temporal is the only other region)
increase their rate of integration, which disrupts or weakens the
currently active context representation for the sake of new incom-
ing information. One parameter (d) controls the degree to which a
shift in source context disrupts the temporal context representation.
This disruption was simulated by presenting a new, orthogonal
item in F and allowing this item to update context by Equation 2,
where d serves as the temporary value of �. This “disruption item”
is not learned by the network and does not enter into the recall
competition. If d is zero, temporal context and source context are
independent; a task shift does not influence temporal context.

It is important to note that “disruptive” is a relative term here,
referring to a small but detectable behavioral effect. The types of
context disruption that one experiences in everyday life are likely
to be orders of magnitude more powerful (but much more difficult
to manipulate experimentally). Just as the reaction time for a
simple judgment is disrupted by a few hundred milliseconds (or
sometimes much less) by a shift in task (e.g., Allport, Styles, &
Hsieh, 1994), so may we observe small but reliable decrements in
memorability and increments in recall latencies given task shifts
during a study period. To anticipate the later results, we report
significant disruptions to both memorability and latency to recall
studied material in a condition in which participants shift between
two orienting tasks within a list.

In the current simulations, we only investigate the effect of a
sudden change of source context on the state of temporal context,

however, it is reasonable to consider that whenever any context
sub-region experiences a large update, other representations are
disrupted. Because all items are quite similar (they are all visually
presented words drawn from a set of concrete nouns) there are
never any similarly large shifts in temporal context. It is possible
that the first items presented on each list trigger a novelty-related
signal (for a similar idea, see Laming, 2006). This possibility
receives further attention below.

Associative connections: Learning and semantic structure. As
described above, two associative matrices represent the feature-to-
context connections (MFC) and the context-to-feature connections
(MCF). Each of these matrices contains a pre-experimental com-
ponent (Mpre

FC and Mpre
CF), representing the set of associative con-

nections in memory prior to performing the free-recall task, and an
experimental component (Mexp

FC and Mexp
CF), representing the set of

associations learned during the study period of the free-recall task.
Mpre

FC represents the set of existing associations between the item
features and the context elements. This component is initialized as
an identity matrix (under the simplifying assumption that any
feature of an item has a corresponding element in context that it
can activate). Because we use a localist code for the items in the
current simulations, this means that the first time an item is
encountered in the context of a given experiment, it activates a
single feature element, which activates a corresponding context
element. Below, we describe how the pre and exp connections are
weighted to create the full matrix MFC.

Mpre
CF represents the set of existing associations between the

context elements and the item features. On the assumption that
semantically related items have been associated with one another’s
temporal contexts, we have implemented semantic associations in
this matrix (Rao & Howard, 2008). Each element in Mpre

CF is
determined by taking the cos � similarity value between two items
(with indices a and b), derived using latent semantic analysis
(LSA; Landauer & Dumais, 1997); scaling that value by a param-
eter s; and placing that value in position (a, b) of Mpre

CF. In this way,
the semantic memory of CMR simulates that of a participant
whose semantic memory is identical to LSA. This is clearly a
drastic simplification of the variability between the semantic mem-
ories of individual participants, and it tends to inflate the degree of
semantic organization produced by the model, because the same
association values that are used to assess semantic organization are
also used to create the semantic associations in the CMR model.
Thus, we were motivated to estimate the degree to which an
individual person’s semantic memory might mismatch the LSA-
derived values, to allow us to create a correction factor to apply to
the semantic clustering scores produced by the model.

The correction factor was estimated with a simple simulation of
an independent data set: the University of South Florida (USF)
Free Association Norms (Nelson, McEvoy, & Schreiber, 2004).
We used the CMR model of semantic memory (derived from the
LSA database) to predict the distribution of responses produced by
participants in the USF study. To simulate variability between
participants, we added normally distributed random noise to each
simulated participant’s semantic memory, and searched for the
level of noise (by manipulating the distribution’s variance) that
would minimize the difference between the CMR model’s predic-
tions and the USF data. This procedure is described in more detail
in Appendix B.
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We used this estimate of variance between individual partici-
pant’s semantic memory structures to derive a corrected semantic
score for each variant of the CMR model, using the following
steps: We analyzed the recall sequences produced by the CMR
model to determine the degree of semantic clustering produced by
the model; this analysis uses the LSA-derived association values as
a normative matrix to determine the degree of clustering. We
added normally distributed random noise (with the variance esti-
mated by our simulation of the USF study, described in Appendix
B) to the normative LSA matrix and calculated the degree of
semantic clustering. This is equivalent to adding noise to each
simulated participant and simplifies the procedure greatly. The
addition of noise to the normative LSA matrix produces a correc-
tion factor that reduces the degree of semantic clustering produced
by the model. The semantic clustering analysis, and the corrected
results, are described below (see the Semantic clustering section
under Simulation Analysis I: Basic Clustering Effects; see also
Table 2).

As mentioned above, the semantic connections are among the
pre-existing associations in the CMR model. The second class of
associations are episodic in nature and are formed as the experi-
ment proceeds. The set of experimental associations Mexp

FC are
initialized to zero and are updated each time an item is studied
using a simple Hebbian outer-product learning rule:

�Mexp
FC � cifi

�, (4)

where fi
� is the transpose of fi. The relative strengths of the

pre-experimental and experimental associations are controlled by a
parameter 	FC; as described by Howard and Kahana (2002a), this
parameter influences the magnitude of the forward asymmetry (the
tendency to make forward transitions during recall):

MFC � �1 � 	FC
Mpre
FC � 	FC�Mexp

FC. (5)

The associative processes on MFC treat item and source features
equivalently. However, the return connections on MCF allow tem-
poral and source context to scale independently to capture the
different magnitudes of temporal and source clustering. The set of
experimental associations Mexp

CF are initialized to zero, and are also
updated using the Hebbian outer-product learning rule:

�Mexp
CF � �iL

CFfici
�. (6)

Both � (described below) and LCF scale the magnitude of partic-
ular connections during learning. The matrix LCF allows CMR to
scale separately the magnitude of source associations relative to
temporal associations (as we discuss below, the CMR model
estimates that associations between source context and item fea-
tures are about 13% as strong as associations between temporal
context and item features). The matrix contains four sub-
components:

LCF � � Ltw
CF Lts

CF

Lsw
CF Lss

CF � . (7)

The first term of the subscript refers to context: t refers to temporal
context, and s refers to source context. The second term of the
subscript refers to features: w refers to item features, and s refers
to source features (this was chosen instead of i, for “item,” to avoid
confusion with the i subscript indicating list position). For exam-

ple, the sub-matrix Lsw
CF scales the associative connections between

source context and item features. The magnitude of Lsw
CF is a

manipulable parameter of the model; Lts
CF and Lss

CF are set to zero
(because source features in F do not currently play a role during
the recall process), and Ltw

CF is fixed at one. In summary, there are
three types of organizational information whose strength is varied
on MCF: semantic information (built into Mpre

CF and scaled by s),
temporal information (added into Mexp

CF as the list proceeds), and
source information (added into Mexp

CF and scaled by Lsw
CF). Because

the recall process is competitive, only two of these strengths need
to vary (source and semantic) relative to a fixed amount of tem-
poral information.

We introduce the scalar �i factor to describe the recall advan-
tage for items in early serial positions (its value is determined by
two manipulable parameters of the model). This factor starts at a
value above one, and as the list progresses, it decays to one, at
which point it has no effect on the dynamics of the model:

� i � �se
��d�i�1
 � 1. (8)

Here, �s is a scaling parameter controlling the magnitude of the
primacy effect, and �d is a decay parameter, which controls the
rate at which this advantage decays with serial position (i). This
primacy mechanism was added to CMR to explain the behavioral
dynamics associated with the primacy effect. Although the appear-
ance of the first list item might trigger a novelty-related context
disruption similar to that elicited by a change in source, we have
opted to use this relatively simple model of the primacy effect. A
full treatment of the primacy effect may require a more complete
model of encoding dynamics (see the Discussion).

The recall process. The context updating and associative
learning processes determine the state of the context cue for each
recall attempt, which activates each of the item features to a
different degree. The degree of activation for a particular item
feature determines how well it fares in an ensuing competition, in
which all of the items on the most recently studied list compete to
be recalled. The recall period is modeled as a series of competi-
tions, each of which takes a certain amount of time and either
produces a winning item that is recalled, or the system runs out of
time, and the next trial begins. The competition is mediated by a
set of accumulators using the framework described by Usher and
McClelland (2001) and is applied in the domain of free recall by
TCM-A (Sederberg et al., 2008). The use of this framework allows
us to make predictions regarding both the order in which the items
will be recalled and the IRTs.

The input to the accumulators is determined as follows:

fIN � MCFci , (9)

where fIN is then used to guide a leaky, competitive accumulation
process:

xs � �1 � �
 � ��N) xs � 1 � �fIN � ε, (10)

xs 3 max�xs, 0
.

This process runs until one of the accumulating elements crosses a
threshold (which is set at one) or the recall period is over. Each
element of the vector xs (where s indexes the number of steps in
the accumulation process) corresponds to an element in f IN

(in other words, one accumulator for each studied item). As in
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TCM-A, 
 is a constant that determines the rate at which the
activation of a given element decays, and � is a constant that
controls lateral inhibition, by scaling the strength of an inhibitory
matrix N, which connects each accumulator to all of the others
(except itself). ε is a random vector whose elemets are drawn from
a random normal distribution with mean zero and standard devi-
ation �, and � is a time constant determining the rate of the
accumulation process. The second line of Equation 10 means that
the accumulating elements cannot take on negative values. Items
that have already been recalled still take part in the competition,
but the threshold serves as an upper limit on their activity value,
and they cannot be recalled again. When an item wins the recall
competition, its item features are reinstated in F. This allows the
system to revive the contextual state associated with the item, by
allowing it to update context according to Equation 2. The input
fIN is updated, and the competition begins again, with xs initialized
to 0.

The decision parameters are critical for obtaining a good fit to
the behavioral data, especially the recall latencies. Increasing the
value of 
 (decay) increases the minimum amount of contextual
support an item must have to be able to cross the recall threshold.
Increasing the value of � (lateral inhibition) increases the degree to
which the items with the most contextual support inhibit those with
less support, enhancing organizational effects in the model. In-
creasing � (noise) works against organization, by increasing the
likelihood that random items are recalled.

Simulation Analyses of the CMR Model

In the following sections, we compare the behavior of the CMR
model with human behavior observed in three studies of immedi-
ate free recall (IFR). The first study was designed and carried out
for the purposes of this report and includes a within-list manipu-
lation of source context (we refer to this as the source-
manipulation experiment, described in Appendix A). The second
study is a subset of the conditions reported by Murdock (1962), in
which list length was manipulated. The third study was reported by
Murdock and Okada (1970) and includes a detailed analysis of the
IRTs between successive recalls.

We separately fit the model to the behavioral data from each
experiment. For each experiment, a single parameter set was found
that simultaneously provided good fits to all of the relevant be-
havioral measures. All model parameters were fixed within exper-
iment (i.e., for the experiments that contained multiple conditions;
Murdock, 1962, and the source-manipulation experiment); the
same set of parameters was used to fit the results from all condi-
tions. This is a high bar for a model of recall; for example, Brown
et al. (2007) recently showed that the SIMPLE model fit the data
from Murdock (1962), but only if the parameters of the model
were allowed to vary for different conditions (Brown et al., 2007).

For each experiment, a genetic algorithm was used to exten-
sively search the parameter space of the model to find the best-fit
parameter set (see Appendix C). For the Murdock (1962) and
Murdock and Okada (1970) experiments, this search was across 10
parameters. For the source-manipulation experiment, three source-
context relevant parameters were included, so the search was
across 13 parameters.2 Table 1 presents the best-fit parameter set
for each experiment. Each parameter set was used to simulate a
large number of trials of the particular paradigm, and the resulting

recall sequences (and accompanying latencies, where appropriate)
were analyzed to create behavioral measures analogous to those
carried out on the original behavioral data. Each experiment
yielded a different number of behavioral measures, which are
detailed in Appendix C. For example, the fitting procedure for the
source-manipulation experiment minimized the difference be-
tween the simulated data and behavioral data across 93 data-points
(including serial position curves, inter-response latencies, and
clustering measures). The goodness of fit for a particular simulated
data set was quantified using a chi-squared statistic.

Each of the best-fitting parameter sets reported in Table 1
yielded a chi-squared value. The number of degrees of freedom for
each model was equal to the number of data points being fit minus
the number of model parameters. We first report the fit to the
classic studies of Murdock (1962; 10 parameters), �2(140) �
760.6, and Murdock and Okada (1970; 10 parameters), �2(55) �
3046.

As mentioned above, we think two mechanisms are important to
understand the behavioral effects of a source manipulation: asso-
ciations between source context and item features, and disruptions
to temporal context due to task-shifts. To assess the importance of
these mechanisms, we compared the ability of three CMR model
variants to fit the data from the source-manipulation experiment.
These were the full model (13 parameters), �2(80) � 235.5, and
two nested variants of the full model; the pure association model
(12 parameters), d � 0, �2(81) � 327.6; and the pure disruption
model (12 parameters), Lsw

CF � 0, �2(81) � 290.8.
We carried out chi-squared comparisons between the full model

and each of the nested models (because one parameter was fixed in
each of the nested models, these tests were carried out with one
degree of freedom). This indicated that the full model gave the best
fit to the data: Full versus pure association, �2(1) � 92.0, p �
.0001; full versus pure disruption, �2(1) � 55.3, p � .0001.

We also calculated the Bayesian Information Criterion (BIC;
Kahana, Zhou, Geller, & Sekuler, 2007; Schwarz, 1978), a quan-
tity used to compare goodness of fit for models with different
numbers of parameters (lower values of BIC indicate better fit,
accounting for the number of parameters of the model) using the
following equation:

BIC � k ln�n
 � n ln�RSS

n � , (11)

where k is the number of model parameters, n is the number of data
points being simultaneously fit, and RSS is the residual sum of
squares (for more details, see Appendix C). This calculation gave
BIC values of �602, �574, and �595 for the full model, the pure
association model, and the pure disruption model, respectively.
These tests agree with the chi-squared measure, indicating that the
full model provides a significantly better fit than each of the nested
variants.

The chi-squared statistics reported above indicate significant
deviation between the model fit and the behavioral data. A com-
mon complaint about chi-squared-based analyses of model fit is
that, given enough data, any model will be invalidated for failing

2 This number of parameters is comparable to other dynamical models of
free recall. For example, eSAM contains 11 parameters (Sirotin et al.,
2005), and TCM-A contains 12 parameters (Sederberg et al., 2008).
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to fit the fine-grained nuances of the data. In the end, the chi-
squared measure is more useful for allowing comparison of model
variants with one another (as described above). Regardless of the
statistical deviation of the best-fit models from the behavioral data,
the CMR model provides a good qualitative fit of a diverse range
of behavioral phenomena across a range of experimental manipu-
lations.

Some component of the deviation of the model predictions from
the behavioral data may arise because we force the model to find
a single parameter set that accounts for the data across all partic-
ipants. This may represent an impossible task for the model, if
subsets of participants are better represented by models with
distinct parameter settings. Fitting the model separately to each
participant’s data would give us further insight into these issues
but requires more behavioral data per participant to obtain stable
behavioral estimates. Current work in our laboratories is focused
on gathering much more behavioral data per participant, making
such an analysis more feasible.

Each of the following four sections examines the recall dynam-
ics of the CMR model in a different way. The first section focuses
exclusively on the source-manipulation experiment, examining the
three basic forms of clustering (semantic, temporal, and source)
observed simultaneously therein. The second section examines the
interaction between temporal and source clustering in the source-
manipulation experiment. The third section examines the classic
serial position effects of IFR reported by Murdock (1962), as well
as the perturbation of these effects by a within-list manipulation of
source context in the source-manipulation experiment. The fourth
section examines the classic IRT effects reported by Murdock and
Okada (1970) and the perturbation of these effects by the semantic,
temporal, and source relations between the studied items in the
source-manipulation experiment.

Simulation Analysis I: Basic Clustering Effects

The influence of each organizational factor (semantic, temporal,
and source) is demonstrated with a series of clustering analyses on

the recall sequences of the source-manipulation experiment de-
scribed in Appendix A. The basic form of the clustering analysis
is similar for each of the three factors. One can step through the set
of recall sequences generated by each participant and label each
word by its semantic identity, list position, and study task. This
information is used to calculate measures of semantic, temporal,
and source clustering, as described below.

Semantic clustering. The degree of semantic association be-
tween two words is represented by a single number, represented by
the cosine distance between the vector representations of those
words derived with LSA (Landauer & Dumais, 1997). These
semantic association values are used to generate a semantic clus-
tering score for each recall transition (representing how related the
two successively recalled words are relative to the other words the
participant could have recalled next), and the average of these
scores across participants provides a summary of the degree of
semantic clustering for the experiment. Specifically, for each re-
call transition, we calculate a distribution of semantic associa-
tion values between the just-recalled word and the set of words
that have not yet been recalled. A percentile score is generated
by comparing the association value corresponding to the next
item in the recall sequence with the rest of the distribution.
Thus, if the participant always chose (from the set of remaining
items) the strongest semantic associate, then this semantic
clustering measure would yield a value of 1, representing per-
fect semantic organization. Likewise, a value of 0 would indi-
cate that the participant always chose the least semantically
related of the remaining items for their next recall. A value of
0.5 indicates no effect of semantic clustering. As Table 2
shows, the observed value for the behavioral data (0.545) is
significantly greater than 0.5, indicating a reliable effect of
semantic clustering, t(44) � 104.2, p � .0001.

Table 2 also presents the estimates of semantic clustering
produced by the CMR model, which exceed the behavioral data
by about 0.02. As described elsewhere (the Associative connec-
tions: Learning and semantic structure section and Appendix

Table 1
Best-Fit Parameters of the Context Maintenance and Retrieval Model

Parameter M62 MO70 Full PA PD

�enc
temp 0.745 0.621 0.776 0.767 0.772

�rec
temp 0.36 0.179 0.510 0.468 0.510

�source 0.588 0.681 0.743
Lsw

CF 0.129 0.171 0
d 0.767 0 0.880
	FC 0.581 0.559 0.898 0.799 0.889
s 1.80 3.06 2.78 2.71 2.80

 0.091 0.166 0.111 0.053 0.092
� 0.375 0.284 0.338 0.272 0.349
� 0.182 0.072 0.159 0.126 0.183
� 0.242 0.323 0.174 0.145 0.201
�s 5.39 6.0 1.07 0.881 1.83
�d 1.41 0.916 0.981 0.641 0.942
n 150 65 93 93 93

Note. These parameters were discovered using a genetic algorithm fitting technique described in Appendix C.
Codes for the different simulations are as follows: M62 � Murdock (1962) data set; MO70 � Murdock and
Okada (1970) data set; Full � full variant applied to the source-manipulation experiment; PA � pure association
variant applied to the source-manipulation experiment; PD � pure disruption variant applied to the source-
manipulation experiment. n corresponds to the number of behavioral data points fit by each simulation.
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B), a correction factor was applied to the model’s estimates of
semantic clustering to account for the fact that, although the
LSA-derived semantic association values mismatch each human
participant’s semantic memory, they are a perfect match for the
CMR model’s semantic memory, which inflates the model’s esti-
mate of the expected degree of semantic clustering. The correction
factor reduced the degree of semantic clustering from 0.791 to
0.566 for the full variant of the model, from 0.792 to 0.569 for the
pure association variant, and from 0.781 to 0.568 for the pure
disruption variant.

Temporal clustering. A similar technique is used to quantify
the magnitude of the temporal clustering effect (see Table 2). For
each recall transition, we created a distribution of temporal dis-
tances between the just-recalled word and the set of words that
have not yet been recalled. These distances are simply the absolute
value of the difference between the serial position of the just-
recalled word and the set of not-yet-recalled words (here, these can
range between 1 and 23). A percentile score is generated by
comparing the temporal distance value corresponding to the
next item in the recall sequence with the rest of the distribution.
Specifically, we calculate the proportion of the possible dis-
tances that the observed value is less than, since strong temporal
clustering will cause observed lags to be smaller than average.
As is often the case, when there is a tie, we score this as the
percentile falling halfway between the two items. If the partic-
ipant always chose the closest temporal associate (which is only
possible for pure serial recall in the forward or backward
direction), then the temporal clustering measure would yield a
value of 1 (as there would never be an opportunity for a tie). A
value of 0.5 indicates no effect of temporal clustering. The
observed value of the behavioral data (0.638) is significantly
greater than 0.5, indicating a reliable effect of temporal clus-
tering, t(44) � 60.3, p � .0001. It is worth noting that although
we describe this as a measure of temporal distance, this is not
meant in the sense of “clock time” as in recent models of
temporal distinctiveness (e.g., Brown et al., 2007) but, rather, in
the sense of positional lag between items in the study list.

At the suggestion of a reviewer, we examined more closely the
pattern of temporal clustering for early and later output positions,
for both near and distant lags. Recently, Farrell and Lewandowsky
(2008) carried out a similar analysis over a number of free-recall
data sets. They found a marked tendency for participants to make
transitions to distant serial positions early in recall. They suggested

that these nonmonotonicities in the probabilities of recall by lag
challenge the generality of the contiguity effect, which, in a pure
form, suggests that probability of recall by lag should drop
smoothly as lag increases. Here, we first examine the behavioral
data, before turning to the simulated data generated by the CMR
model.

Figure 3 (A and C) shows the probability of making recalls of
various temporal distances to the just-recalled item. The analysis is
presented separately for output positions 1–3 and for output posi-
tions 4 onward. We restricted our analysis to mid-list serial posi-
tions (serial positions 5–19), as recalls from these positions allow
us to separately examine the influence of the contiguity effect and
the recency effect on recall transitions. The analysis was carried
out separately for each originating serial position and participant,
and then aggregated across serial positions and participants, such
that each originating serial position is given equal weight in the
analysis. Because of the relatively small number of transitions
being examined in certain cases (e.g., the more distant bins for
output positions 1–3), we aggregated our conditional probabilities
over multiple lags, such that the dot in a particular bin represents
the probability of transitioning to any lag in the specified range.

The contiguity effect and forward asymmetry for early output
positions can be clearly seen in Figure 3A, bins �1 and 1. The
nonmonotonicity can be seen as well, in bins 11.5 and 18.5. When
recall transitions fall into this bin, it means that the participant
made an early recall of a mid-list item, followed by a recall of an
item from the end of the list. In other words, the nonmonotonicity
is due to the persistence of the recency effect, even after a mid-list
item is recalled. Figure 3C shows that later in the recall sequence,
the influence of the recency effect recedes, but the contiguity effect
remains.

Figure 3B and D presents these same analyses but on the
CMR full model (the two variants show similar results). The
model captures the basic behavioral pattern whereby early
recall transitions show evidence of both a contiguity effect and
a recency effect (see Figure 3B). Although the simulated re-
cency effect matches the behavioral data, the model underpre-
dicts the exact magnitude of the contiguity effect. The simu-
lated data match the behavioral data well for the later output
positions (see Figure 3D), both in terms of the size of the
contiguity effect and the attenuation of the recency effect. We
return to this issue in the Discussion (Relationship to Other
Models of Free Recall).

Source clustering. The degree of organization by source (in
this case, encoding task identity), was estimated by tallying the
number of recall transitions that were between items studied with
the same task and dividing by the total number of recall transitions
to give a proportion of same-source recall transitions for each
participant. This number was averaged across all participants and
is reported in Table 3. A relabeling technique, in which each
control list was randomly assigned the task ordering from one of
the task-shift lists, was used to create a baseline for the source-
clustering measure. By relabeling the control list items with the
same sequence of task alternations used in the experimental lists
(and aggregating over many such assignments), we calculated the
proportion of same-task transitions one would expect to observe
solely on the basis of the temporal contiguity of items studied with

Table 2
Clustering Scores During Recall

Analysis type

Semantic Temporal

M SE M SE

Behavioral data .545 .005 .638 .011
CMR

Full model .566 .001 .636 .001
Pure association .569 .001 .630 .001
Pure disruption .568 .001 .647 .001

Note. All results are significant at the p � .001 level. A correction factor
has been applied to the semantic clustering scores produced by the context
maintenance and retrieval model. CMR � context maintenance and re-
trieval.
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the same task.3 The overall source clustering effect was both
numerically large (an increase from 0.536 to 0.606 in within-task
transitions between the relabeled control and task-shift lists; see
Table 3, All transitions column) and statistically reliable (paired
sample t test across participant means), t(44) � 6.83, p � .001.

Table 3 (All transitions column) also presents the source-
clustering results for each of the three model variants. The full
model and pure association variants provide a very good fit to the
behavioral data, but the pure disruption variant underpredicts the
degree of source clustering. This is because the disruption mech-
anism simply weakens item-related contextual support every time
there is a task shift, which serves to isolate items in different trains
from one another. Clustering arises for same-train items because,
given the recall of one item in a train, the retrieved context
supports recall of other items in that train but not items in other
trains.

Thus, the recall sequences exhibit an influence of (at least) these
three organizational factors: semantic, temporal, and source. Char-
acterizing the ways in which these factors interact is not a trivial
matter. As we elaborate, the factors do not seem to combine in a
linear manner. Rather, these combined factors set in motion a

nonlinear recall competition that leads to the actual response.
Clouding the picture further, each recall updates the state of
internal context, which alters the course of all successive recalls.
The highly interactive and dynamic nature of the recall process
makes the CMR model a valuable tool for interpreting the rich
behavioral interactions between these organizational factors.

Simulation Analysis II: An Interaction Between Source
and Temporal Information

Source clustering is observed at all transition distances, but the
magnitude of source clustering is enhanced for items studied
nearby in time. Table 3 (Remote transitions column) describes the
proportion of recall transitions to same-task items, conditional on
the fact that this is a remote transition (outside of the local train of
same-task items). A significantly greater proportion of these re-
mote transitions are to same-task items in the task-shift lists,

3 A similar method was used by Nilsson (1974) to quantify the degree of
clustering by modality.

0

0.05

0.1

0.15

0.2

0.25

0.3

C
on

di
tio

na
l R

es
po

ns
e 

P
ro

ba
bi

lit
y

−18.5 −11.5 −3.5−1 1 3.5 11.5 18.5
0

0.05

0.1

0.15

0.2

0.25

Mean lag

C
on

di
tio

na
l R

es
po

ns
e 

P
ro

ba
bi

lit
y Mean lag of bin

−18.5 −11.5 −3.5−1 1 3.5 11.5 18.5

Mean lag

A) Behavioral: O.P. 1−3 B) Simulation: O.P. 1−3

C) Behavioral: O.P. 4+ D) Simulation: O.P. 4+

Figure 3. Conditional probability of recall transitions as a function of lag, for the source-manipulation
experiment. Transitions originating from mid-list items (serial positions 5–19) are considered. Each dot
represents the aggregate probability for a set of lags, marked according to the mean lag of that bin; from left to
right, these are: �19 to �18, �17 to �6, �5 to �2, �1, 1, 2 to 5, 6 to 17, and 18 to 19. A: The behavioral
data, probabilities for output positions 1–3. B: The context maintenance and retrieval full model, probabilities
for output positions 1–3. C: The behavioral data, probabilities for output positions 4 onward. D: The context
maintenance and retrieval full model, probabilities for output positions 4 onward.
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compared with the relabeled control lists (0.391 and 0.334, respec-
tively; paired-sample t test on participant means), t(44) � 5.11,
p � .001. Thus, longer range transitions also exhibit clustering by
task identity, although the magnitude of the effect is diminished
relative to nearby transitions.

Table 3 (Remote transitions column) also presents the remote
source-clustering results for each of the three model variants. The
full model and the pure association variants provide a reasonable
fit to the data. However, the pure disruption variant underpredicts
the magnitude of the remote source clustering.

The interaction of the source and temporal factors is apparent in
Figure 4A, which plots the results of a conditional response prob-
ability analysis of the recall transitions. Here, instead of grouping
items by serial lag to the just-recalled item, we group them by train
position relative to the just-recalled item (creating a train-lag CRP
analysis). A train lag of zero corresponds to the recall of an item
from the same train as the just-recalled item, whereas a train lag of
one corresponds to the recall of an item from the next train in the
study sequence. The source-clustering effect is revealed most
clearly in the difference plots (see Figures 4B, 4D, 4F, and 4H)
between the control and shift conditions. In the difference plots,
same-task (black squares) and between-task (white squares) tran-
sitions are marked differently, revealing that the tendency to clus-
ter by task is a decaying function of temporal distance from the
just-recalled item. A strong source-clustering effect is exhibited by
an increase in the black squares above zero and a decrease of the
white squares below zero, meaning that same-task items are more
likely to be clustered with one another than between-task items.

Inspection of the behavior of the pure disruption and pure
association model variants (see Figure 4E–4H) suggests that two
factors play a large role in shaping the interaction between tem-
poral clustering and source clustering: the task-shift disruption
mechanism and the nonlinear recall competition. The disruption of
temporal context given a shift in source context (novelty-related
disruption) causes items in the same train to be tightly coupled to
one another; when a particular item is recalled, the reinstated
temporal context representation overlaps well with same-train
items but not with items in neighboring trains. Because same-train
items are also same-task items, this mechanism inflates the degree

of source clustering for nearby items. This can be seen in the plot
for the pure disruption model variant (see Figure 4E), which, even
without associations between source context and item features,
shows source clustering for nearby (same-train) items. The task-
shift disruption mechanism, in general, sharpens the train-lag CRP
plot for the task-shift condition relative to the relabeled control
condition. This sharpening causes a decreased likelihood of tran-
sitions to neighboring trains (�1 and �1 train lag) relative to the
likelihood of making these transitions in the control condition
(where item context is not disrupted between trains).

The associations between source context and item features pro-
duce the source clustering observed in the pure association variant
of the model. Here, source context provides equivalent support to
all items associated with a particular task; however, there is still an
interaction between the degree of source clustering and the tem-
poral proximity of the items (see the peak at train-lag 0 in the pure
association panel of Figure 4H). This interaction arises as a con-
sequence of the nonlinear recall competition; because the items
compete with one another to cross the recall threshold, an increase
in support can have a supra-linear effect on the likelihood of an
item winning the competition. Even though task information pro-
vides equivalent support to all same-task items, this task support
combines with the temporal support for nearby items to result in
increased source clustering for temporally proximal items.

Simulation Analysis III: Serial Position Effects

The experimental study of the free-recall paradigm has been
long dominated by the analysis of probability of recall by serial
position on the study list. Murdock (1962), in a classic article,
described behavior in an IFR paradigm across several conditions,
where both list length and presentation rate were manipulated. The
CMR model has not yet been extended to deal with presentation
rate, so we focus here on the effect of changes in list length on the
probability of the recall of items by serial position (with a 1-s
presentation rate). In his investigation, Murdock (1962) described
the effect of changing list length on three features of the serial
position curve. He showed that increasing list length did not
change the shape of the primacy portion of the curve, although the
overall probability of recall for the primacy positions did drop with
increases in list length. He showed that increasing list length
caused the mid-list asymptote to drop. Finally, he showed that
increasing list length had no effect on the slope of the recency
portion of the curve.

The CMR model fits the effects of list length on the shape of the
serial position curve with a single set of parameters. Figures 5A
and 5B, respectively, present the original behavioral data reported
by Murdock (1962) and the simulated data from the best-fit pa-
rameter set of the CMR model (see M62 in Table 1). We arrived
at this fit by using a parameter search that minimized the differ-
ence between the simulated data and the behavioral data for the
three serial position curves, as well as the lag-CRP curves for the
three conditions (for �10 lag positions; results not shown).

The major behavioral effect, in which the probability of recall
for early and mid-list items decreases as a function of list length,
is observed for wide regions of the parameter space of the model
and can be understood in terms of the dynamics of the recall
competition. The � term in Equation 10 causes the support for any
one item to decrease as the number of items competing for recall

Table 3
Source Clustering During Recall

Analysis type

All transitions
Remote

transitions

M SE M SE

Behavioral data
Relabeled control .536 .009 .334 .011
Shift .606 .008 .391 .012

CMR: Full model
Relabeled control .528 .001 .336 .001
Shift .611 .002 .410 .003

CMR: Pure association
Relabeled control .523 .001 .336 .001
Shift .604 .002 .413 .002

CMR: Pure disruption
Relabeled control .530 .001 .333 .001
Shift .578 .002 .368 .002

Note. CMR � context maintenance and retrieval.
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increases. However, the recent items are somewhat insulated from
this lateral inhibition, as they are strongly supported by the end-
of-list context cue. The nonlinear nature of the recall competition
allows these well-supported items to cross threshold quickly,
whereas items retrieved later in the recall sequence are relatively
less well-supported (owing to a �rec

temp parameter that is lower than
�enc

temp) and feel the effects of competition more sharply.
The lack of an effect of a manipulation of list length on the slope

of the recency effect traditionally has been taken as evidence for a
short-term buffer, in which any items whose representations were
active in the buffer were shielded from proactive interference from
the preceding items in the study list. Recently, Sederberg et al.
(2008) showed that TCM-A could account for the insensitivity of
the probability of recall for recently studied items to the overall list
length, although they did not present a quantitative fit of the

Murdock (1962) data. TCM-A would likely provide as good a fit
to the Murdock (1962) data as does the CMR model; however,
TCM-A is unable to fit effects related to semantic and source
organization. We argue that although TCM-A provides a good
model of temporal organization, understanding the dynamics of
free recall requires consideration of the role of semantic and source
information as well.

The CMR model provides a good fit to the probability of recall
by output position (see Figure 6), as well as the basic serial
position curve (see Figure 7) of the source-manipulation experi-
ment. Figure 6 depicts the probability of recalling an item studied
in a particular serial position, as a function of output position. The
temporal component is obvious in the recency effect observed in
the first output position; however, by the third recalled item, all
serial positions are nearly equiprobable for recall.
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Figure 4. Conditional response probability analysis of recall transitions by train lag, for the relabeled control
and task-shift conditions. A and B correspond to the analysis on the behavioral data. A: Each point corresponds
to the probability of making a transition of a particular train lag from the just-recalled item. B: The difference
in probabilities between the relabeled control and task-shift conditions. Black squares correspond to transitions
between items studied with the same task, and white squares to transitions between items studied with different
tasks. C and D: The same analysis of the simulated data from the context maintenance and retrieval full model.
E and F: The same analysis of the simulated data from the context maintenance and retrieval pure disruption
model. G and H: The same analysis of the simulated data from the context maintenance and retrieval pure
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Were temporal and source information the only two factors
driving recall order, the CMR model would predict that recall
would generally proceed backwards from the end of the list.
Although a strong source cue would produce some temporal
spread in the initial recall transitions, source context provides
equivalent support for all items associated with a particular task;
once source and temporal cues combine, nearby same-task items
are still more supported than remote same-task items. The seman-
tic associations (s) and the decision noise (�) both have a stochas-
tic effect on the recall sequence. Both of these parameters contrib-
ute to the flattening of the serial position curve across the first
three output positions.

The CMR model also provides a good fit to the serial position
curve of the source-manipulation experiment (across all output
positions; see Figure 7). The overall percentage of items recalled
is much higher than in the comparable list length of the Murdock
(1962) study. This is due to a number of differences between the

experiments, including an increased presentation time in the cur-
rent experiment (3 s) and the use of an orienting task. The best-
fitting parameter set for the CMR model is presented in Table 1;
small adjustments in a number of the model parameters allow the
model to explain the differences in the serial position curves
between the experiments.

Figure 7 reveals that when participants are asked to shift be-
tween encoding tasks within list, they are less likely to remember
items from early and mid-list serial positions. It also shows that the
items in recent positions are just as well recalled. In the task-shift
condition, participants switch between variably lengthed trains of
items associated with each task. Each task-shift list contains six or
seven trains of items. By examining probability of recall as a
function of train position, we gain some insight into the influence
of source information in this domain. Figure 8 presents the pro-
portion of items recalled from each train in the study list. To
present the six- and seven-train lists on the same plot, we divided
the six-train lists into two parts (the first three and last three trains)
and “end justified” the last three trains to correspond with Trains
5, 6, and 7 on the seven-train lists. Separate analysis of the six- and
seven-train lists revealed similar results, providing justification for
this aggregation method.

We used a relabeling procedure on the data from the control
condition to construct the Relabeled Control line in Figure 8,
allowing us to more directly compare performance between the
task-shift and control conditions. By this procedure, each control
list was assigned the task ordering from a randomly selected
task-shift list. This task ordering was used to assign each serial
position in the control list a train position (numbering from one
through six if the randomly selected task-shift trial was a six-train
list and one through seven if it was a seven-train list). We analyzed
the recall sequences from these relabeled control trials to count the
proportion of items recalled from each relabeled train, giving rise
to the Relabeled Control line in Figure 8. We aggregated many
random assignments of task-shift lists to control lists to create a
stable baseline measure, against which to observe the influence of
source information on the probability of recall of studied items.

Figure 8B presents the difference between these curves for the
relabeled control and task-shift conditions. Overall, participants
recalled a lower proportion of items in the task-shift condition
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relative to the relabeled control condition (as measured with a
paired-sample t test), t(44) � �5.19, p � .001. It may seem a bit
counterintuitive that memory was worse for lists with multiple
retrieval cues (appealing to the generally beneficial effect of en-
coding variability); however, the literature is unclear on what one
ought to expect in this situation. For example, Tulving and Colotla
(1970) found a decrease in mean recall for lists that were com-
posed of items drawn from multiple languages, relative to unilin-
gual lists (the participants were trilingual), whereas Murdock and
Walker (1969) found a small increase in mean recall for mixed-
modality lists (auditory and verbal presentation) relative to lists
that were purely of one modality or the other. It is interesting to
note that one can observe significant organization by source, even
when this source variation is harmful to overall recall of the list.
We suggest that this is because temporal information is a powerful
cue, and the disruption to temporal context due to repeated task
switches harms recall to a greater extent than the variability in
source helps recall.

Closer examination of recall by train position revealed that,
although participants indeed have worse memory for items in early
and mid-list trains, t(44) � �5.83, p � .001, memory is actually

improved for the final train of items in the task-shift condition,
t(44) � 2.30, p � .05. Figures 8C and 8D show that the CMR
model is able to capture these effects. According to the model,
these two effects mostly arise because the act of switching tasks is
disruptive to temporal context. Thus, early and mid-list items are
difficult to retrieve, because temporal context has changed more
over the course of the task-shift list than over the control list. This
same mechanism explains the improved recall for the final set of
items. Because every train of items except the last one is less well
supported in the retrieval competition, these final items benefit
from the reduction in proactive interference and are more likely to
be recalled than the equivalent items in the relabeled control lists.
It is worth noting that this increase in proportion recalled is
obscured in the standard serial position curve (see Figure 7),
because the length of the final train varies randomly between two
and six.

As mentioned above, the full CMR model provides a signifi-
cantly better fit to the global pattern of behavioral data than do the
two variants, but by examining the best-fit versions of these
variants (one without associations to source context [pure disrup-
tion] and one without a disruptive task shift [pure association]), we
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can gain insight into the roles of these mechanisms on recall
dynamics. Figure 9A shows that the pure disruption model variant
easily fits the decreased memorability of items in the task-shift
condition (although it cannot account for the full pattern of source
clustering). This is due to the small disruption to temporal context
that occurs with each shift between tasks. However, the pure
association model is unable to provide a good fit to the train serial
position curves (see Figure 9C). In particular, it has trouble fitting
the decreased memorability of items in the task-shift condition.
Specifically, Figure 9D shows that the model cannot fit the im-
paired recall of items from Trains 5 and 6 in the task-shift condi-
tion. This is because source and temporal context naturally work
together in the model, as follows: Given the strong associations
between source context and item representations, the model often
jumps back to the fifth train (which was always studied with the
same task as the final train). Once the context associated with
the fifth train is reinstated, there is a strong bias to step forward to
the sixth train, because of both the general forward bias in recall
transitions and the still-lingering end-of-list context present in the
context representation. Thus, the pure association variant overpre-
dicts the percentage recall for these later trains. This is true not
only of the best-fit parameter set but also of all of the pure
association parameter sets that we inspected that provided reason-
able fits to the other aspects of the data. Taken together, these
simulations suggest that disruption of organizational processes due
to task switching is behind the reduced memorability of items in
the task-shift condition.

Both variants explain the increased memorability of the final
train in a similar way: The pure disruption variant fits this because
the most recent task shift disrupts the temporal context associated
with earlier items (leading to a reduction in proactive interference
from earlier items during the recall competition). The pure asso-
ciation variant fits this because the source representation associ-
ated with the final train of items is still active, giving these items
a boost in the recall competition. Thus, the model reveals the
influence of multiple organizational factors on the memorability of
studied material. In the next section, we examine how these
organizational factors affect the speed with which these items are
retrieved.

Simulation Analysis IV: Inter-Response Latencies

The ability of the CMR model to capture basic serial position
effects places it alongside several models of the recall process,
such as Search of Associative Memory (Raaijmakers & Shiffrin,
1980), Adaptive Control of Thought–Rational (Anderson, Bothell,
Lebiere, & Matessa, 1998), TCM-A (Sederberg et al., 2008), and
Scale-Independent Memory, Perception, and Learning (SIMPLE;
Brown et al., 2007). Many fewer models have been developed to
account for the fine-grained temporal dynamics of retrieval, in-
cluding both output-order effects and the IRTs between successive
recalls. Raaijmakers and Shiffrin (1980) applied Search of Asso-
ciative Memory to the problem of serial position effects and IRTs,
but not simultaneously, as the temporal dynamics of retrieval from
short-term store had not been worked out.

A classic study by Murdock and Okada (1970) examined IRTs
between successive recalls in the free-recall paradigm and showed
that they increase exponentially with each response produced and
that the rate of decay of the exponential curve varies as a function
of the total number of items recalled on the trial in question. The
exponential character of the growth in IRTs has been replicated
and extended in an elegant series of articles by Wixted and
colleagues (Rohrer & Wixted, 1994; Wixted & Rohrer, 1993,
1994).

Figure 10A shows an analysis of the original Murdock and
Okada (1970) data, plotting IRTs for trials on which four, five, six,
and seven total items were recalled. Figure 10B shows the same
analysis on the best-fitting version of the CMR model. The model
was fit to the serial position curve, lag-CRP curve (�10 lags), and
the set of inter-response curves presented in Figure 10A. This
pattern of IRT increases seems to be a robust property of the model
and was exhibited for a wide region of the parameter space
explored.

Two parameters are critical for observing this pattern in the
IRTs. Perhaps the most important is the lateral inhibition param-
eter in the recall competition (�). Increasing � increases the com-
petitiveness of the recall competition, such that well-supported
items race past threshold quickly, and items with less support take
a much longer time to reach threshold. Exploration of parameter
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space revealed the importance of the semantic association param-
eter (s) for the model to account for inter-response timing. A
search of parameter space with s fixed at zero (making the CMR
model nearly isomorphic with TCM-A) was unable to discover any
parameter sets that allowed the model to simultaneously fit the
pattern of IRTs, serial position curve, and lag-CRP curve. This is
because the semantic associations play an important role in the
recall dynamics in the CMR model. Because the words are ran-
domly selected from a large word pool (and are randomly placed
in the study list), some items tend to be well connected to one
another, and others tend to have fewer strong semantic associations
with the other list members. The well-connected items tend to be
retrieved quickly and early in the recall sequence, and later recalls
tend to be to less well-supported items. Temporal context, of
course, also plays an important role here. The end-of-list temporal
context is a good cue for the recent items; thus, these items are
recalled quickly and early in the recall sequence. The model
suggests that the temporal context retrieved during the recall
period (�rec

temp) is weaker than that retrieved during the study period
(�enc

temp), which means that later recalls are not as well supported in
the decision competition.

The rise of IRTs with output position has been traditionally
explained as arising from a sampling-with-replacement rule (Raaij-
makers & Shiffrin, 1980; Wixted & Rohrer, 1994): As recall
progresses, more of the items sampled for recall are ones that have
already been recalled. Given that each sampling attempt takes a
fixed amount of time, the IRTs grow in a roughly exponential
manner. The CMR model suggests that the increase in IRTs with
output position is not due to ever-increasing intrusions of already-
recalled items but, rather, due to the relative lack of support for
these later items in the recall competition, paired with interference
from the set of already-recalled items. However, the CMR mech-
anism is similar in spirit to the sampling-with-replacement rule, in
that at least one source of interference originates with the already-
recalled items.

The CMR model can account for the major source of variance in
IRTs, the exponential rise with output position and total number of
recalled items. This allows us to examine the model’s predictions
regarding the influence of semantic, temporal, and source infor-

mation on IRTs. A number of groups have reported decreased
IRTs for items that are similar on various dimensions. For exam-
ple, a number of studies of recall of categorized stimuli observed
decreased IRTs when the participant shifted to a new category
(Patterson, Meltzer, & Mandler, 1971; Pollio, Richards, & Lucas,
1969; Wingfield, Lindfield, & Kahana, 1998). Similarly, succes-
sively recalled items that are semantically similar have smaller
IRTs than items that are dissimilar (Howard & Kahana, 2002b).
Finally, items that were studied in a similar temporal context
(nearby list positions) have smaller IRTs than items studied in
distant temporal contexts (distant list positions; Kahana, 1996).
The CMR model suggests that these effects arise because of the
context reinstatement that occurs as each item is recalled. Further-
more, the model predicts an effect of source context on IRTs,
whereby items associated with similar sources are recalled with a
shorter IRT than are items associated with distinct sources. The
source-manipulation experiment was designed to allow us to si-
multaneously examine effects of semantic, temporal, and source
information on retrieval. Although the effects of semantic and
temporal information on IRTs have been documented (Howard &
Kahana, 2002b; Kahana, 1996), we are unaware of any report of a
source-related IRT effect. As we detail below, all three effects
were found in the behavioral data.

For our three IRT analyses, we calculated the mean IRT for each
output position within each participant, allowing us to remove
these sources of variance from the IRT measure. For each orga-
nizational factor, we calculated a threshold to classify each recall
transition as being between similar or dissimilar items. For the
semantic factor, an LSA-derived similarity score of 0.2 was used
as the threshold; items with a similarity greater than or equal to 0.2
were classified as semantically similar, and below 0.2, dissimilar.
For the temporal factor, items with a lag difference of 3 or less
were temporally similar, and greater than 3, temporally dissimilar.
For the source factor, items studied with the same task were
similar, and items studied with distinct tasks were dissimilar.

The behavioral data from the control condition were examined
for semantic and temporal effects. On average, the IRT between
semantically similar items was 1,771 ms faster than that between
dissimilar items, an effect that was statistically significant (SEM �
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443), t(44) � 4.04, p � .0001. The full CMR model showed a
similar effect (M � 2,387, SEM � 88), t(539) � 26.96, p � .0001.
The mean IRT between temporally similar items was 700 ms faster
than for temporally distant items, which was also significant
(SEM � 334), t(44) � 2.12, p � .02. Again, the full CMR model
showed a similar effect (M � 367, SEM � 102), t(539) � 3.60,
p � .0001.

We examined the behavioral data from the task-shift condition
for the source effect. As reported in Table 4, the IRT between
same-task items was 1,302 ms faster than between-task items,
which was significant, t(44) � 4.78, p � .002. All three model
variants showed this effect: full, t(539) � 5.26, p � .002; pure
association, t(539) � 3.37, p � .002; and pure disruption, t(539) �
6.97, p � .002. These results suggest that both source-to-item
associations and task-shift disruption are sufficient to explain the
source-related cost on IRTs. The association mechanism does this
in a positive way, causing same-task items to get a boost from the
source context reinstated by the just-recalled item. The disruption
mechanism does this in a negative way, decreasing support for all
list items in a different train than the just-recalled item. This causes
the same-train items (which, by definition, are same-task) to be
favored relative to the other items in the competition. Although
these model fits show some quantitative deviations from the be-
havioral data, it is worth noting that these measurements were not
included in the fitting procedure, so it is possible that the model
could produce a better fit to these data with some parameter
adjustment.

The CMR model is a model of memory search; as such, it has
little to say about the processes driving performance of the orient-
ing task judgments. However, the CMR model attempts to explain
the role of task representations in memory, so it is worth docu-
menting that in the behavioral data, we observed a shift cost in the
reaction time to make the orienting task judgments in the task-shift
condition (see Table 5), as has been observed many times in the
task-performance literature (e.g., Allport et al., 1994). We explore
the connection between these two domains in the Discussion.

Discussion

The CMR model of memory search proposes that features of the
study episode activate an internally maintained context represen-
tation that is used to search through one’s recent memory. The
model is designed to explain three forms of organization: semantic
clustering, temporal clustering, and source clustering. We intro-
duced the spotlights of memory analogy to describe the process by

which the maintained context representation sweeps across the
associative structures of the memory system, searching for the
representations of recently studied items. Furthermore, we de-
scribed two ways in which these context representations can in-
teract: First, by combining to drive a nonlinear recall competition
they can have super-additive effects on the likelihood of recalling
particular items. Second, a large influx of novel information to one
context representation can disrupt other context representations.

We examined three studies of free recall: a new experiment in
which we manipulated source context within list (the source-
manipulation experiment), a classic study of serial position effects
(Murdock, 1962), and a classic study of IRTs (Murdock & Okada,
1970). The source-manipulation experiment yielded reliable ef-
fects of three forms of clustering: semantic (assessed using latent
semantic analysis), temporal (serial lag), and source (encoding
task). This observation of clustering by encoding task is, to our
knowledge, the first such observation reported in the literature,
suggesting that some representation related to the operations car-
ried out during study is associated with the representation of the
to-be-remembered item. This finding allows us to add task features
to the set of attributes that can be used by the memory system to
target particular memories (Underwood, 1969). Furthermore,
closer inspection of the recall sequences revealed that, whereas
task clustering was observed for both nearby and remote transi-
tions, the effect is greatly enhanced for words studied nearby in
time.

The CMR model shows the classic insensitivity of the recency
effect to the length of the studied list, whereas the overall propor-
tion of recalled items drops as list length increases (Murdock,
1962). When source context was varied within list, there was a
decrease in memorability for all studied items, except for the most
recent, which showed enhanced memorability. Exploration of vari-
ants of the model suggested that a disruption of temporal context
with each task shift was necessary to explain this decreased mem-
orability but that all variants of the model predicted the enhanced
memorability of the final items.

The CMR model shows the classic exponential rise in IRTs with
output position, modulated by the total number of items to be
recalled on that trial (Murdock & Okada, 1970). Finally, the model
accounts for the cost (to IRTs) for shifting between items that were
dissimilar on any of the three organizational dimensions (semantic
similarity, temporal distance, and task identity). The shift cost on
IRTs for between-task recall transitions is another observation that
we believe is novel in the literature.

Clustering: Association vs. Disruption

The CMR model provides a framework in which to explore the
mechanistic basis of recall clustering. A (perhaps) counterintuitive
finding of the current simulations was that associations between
context representations and item features were not enough for the
model to explain the full pattern of data observed in the source-
manipulation experiment. We found that the addition of a mech-
anism whereby shifts in source context (such as the one elicited by
a task switch) during the study period also disrupt temporal context
was also necessary to explain two facets of the behavioral data.
First, as detailed in an analysis of the interaction between temporal
and source information during recall (see the Simulation Analysis
II section and Figure 4), the disruption mechanism allows the

Table 4
Source Shift Cost in Recall Latencies (Output Transitions 1–8)

Analysis type

Shift cost

M (ms) SE

Behavioral data 1,302 276
CMR

Full model 432 82
Pure association 217 65
Pure disruption 586 84

Note. Shift cost is the difference between the same-task and between-task
transitions. CMR � context maintenance and retrieval.
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model to show the behavioral pattern whereby source clustering is
greater for items studied nearby in time and tapers off with
temporal distance. Second, as detailed in an analysis of serial
position effects (see the Simulation Analysis III section and Figure
8), the disruption mechanism allows the model to account for the
decreased memorability of early and mid-list items in the task-shift
condition. In effect, shifts in task context cause items studied
nearby in time to become more distant from one another, relative
to two items studied with the same task.

We also observed that the model, without associations between
source context and item features, showed some degree of source
clustering, albeit only for items studied nearby in time. How can a
purely disruptive mechanism support increased clustering? Above
(in Simulation Analysis II), we showed that because recall is a
competitive process, the task-shift disruptions to temporal context
create isolated islands of same-train items whose associations with
items studied in other trains have been weakened, relative to a
control condition. Although the overall probability of recalling any
one item is lower, conditional on the recall of a particular item, the
likelihood of recalling another item from the same island is en-
hanced.

An interesting question arises as to whether the disruption of
context due to exposure to novel information is specific to shifts
between tasks or whether it is a general principle of the memory
system. A more definitive answer may await further research;
however, a number of findings in the literature provide converging
evidence for such a hypothesis. The study by Sahakyan and Kelley
(2002), described in the introduction, introduced a disruption to
inner mental context perhaps related to the context disruption due
to task switching. Parallel findings can also be observed with
manipulations of external context.

For example, Strand (1970) carried out a classic study of envi-
ronmental context change using a retroactive interference para-
digm (in which participants studied two lists in sequence and were
then tested on their memory for the first). Participants were run in
one of three conditions: a neutral condition, in which participants
studied both lists in the same room; a context-change condition, in
which participants walked to another room between lists; and a
context-disruption condition, in which participants walked into the
hall between lists but returned to the same room. It is interesting
that Strand found that the context-change and the context-
disruption conditions elicited an equivalent degree of reduction of

retroactive interference, suggesting that the primary factor at work
was the disruption due to traversing the halls and not the removal
of the contextual associations of the surrounding environment.4

Here, the novel interpolated activity involves simply walking
into the hall; presumably, this drives an updating of temporal
context, which causes the two lists to be encoded more dis-
tinctly in memory.

The CMR model provides a framework in which to examine the
interactions between context disruption and context associations.
These two factors may be important in understanding a number of
classic findings in the free-recall literature that explore the disrup-
tive effects of interpolated mental activity on the memorability of
studied items. Of particular relevance are a set of experiments that
compared performance in IFR, delayed free recall (DFR), and
continual distraction free recall (CDFR) paradigms (Bjork & Whit-
ten, 1974; Glanzer & Cunitz, 1966; Postman & Phillips, 1965). In
these paradigms, the participant engages in a short period of a
distraction task (e.g., mental arithmetic) either just prior to begin-
ning the recall period (DFR) or before and after every item
(CDFR).

Recently, Sederberg et al. (2008) showed that TCM-A can
account for a number of dissociations between IFR, DFR, and
CDFR by assuming that performing the distraction task disrupts
the temporal context representation (using a similar mechanism to
our task-shift disruption). Although this mechanism proved suffi-
cient to explain performance across these paradigms, the addition
of a task-context representation may be required to explain per-
formance in a set of paradigms that manipulated the identity of the
distraction task within list.

Specifically, Koppenaal and Glanzer (1990) introduced a variant
of the CDFR paradigm in which participants perform one distrac-
tion task in the intervals between each list item but a second task
in the interval just prior to the start of the recall period. This shift
in distraction task just before recall causes an attenuation of
long-term recency usually observed in a standard CDFR paradigm.

4 Subsequent studies of environmental context change revealed that,
with careful control of the amount of disruption each group of participants
received (e.g., by sending all groups to a waiting room between lists), an
effect of context change could also be observed (Rutherford, 2000; Smith,
Glenberg, & Bjork, 1978).

Table 5
Mean Reaction Times for Judgments During the Study Period

Task

Control Shift, repeat Shift, new Switch cost

M SE M SE M SE M SE

Size 1,336 33 1,405 29 1,626 33 221� 18
Animacy 1,319 34 1,414 32 1,578 35 164� 18
Combined 1,328 33 1,409 30 1,601 33 192� 15

Note. These data are from the judgments in the behavioral data from the source-manipulation experiment; the
context maintenance and retrieval model did not simulate these judgments. Reaction times are reported in
milliseconds. Shift, repeat refers to items in the task-shift condition in which the encoding task is the same as
that for the preceding item; Shift, new refers to items in the task-shift condition in which the encoding task is
different from the preceding item. Shift cost is the difference between the reaction times observed for the repeat
and new judgments.
� p � .0001.
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The novelty-related disruption mechanism of CMR would be
triggered by a shift in distraction task, which would disrupt tem-
poral context to a greater extent than in the standard CDFR
paradigm, in which the distraction task is consistent throughout.
Even without the novelty-related disruption, the CMR model
would predict worse performance with a shift in distraction task:
Because distraction task identity is integrated into context and
associated with the studied items, shifting to another distraction
task just before recall removes a cue that could be used to support
those items in the recall competition.

Finally, Thapar and Greene (1993) demonstrated that when one
performs a different distraction task after each list item (including
between the study period and the recall period), the recency effect
reemerges (see also Neath, 1993). The CMR model should handle
this finding as well; because there is an equivalent amount of
disruption to task and temporal context after every list item, the
most recent list items are again favored relative to the more distant
items. By allowing task to be represented within source context,
the CMR theory provides a straightforward explanation of the
effect of the manipulation of distractor tasks on the memorability
of studied material. Furthermore, this approach allows us to treat
manipulations of encoding and distractor tasks in a common
framework and predicts that the same organizational effects that
were observed by manipulating encoding task should also obtain
with within-list manipulations of distractor task.

Task Context and Human Memory

The role of the processing task in later memorability of studied
material has a long history in the literature. A major thread, levels
of processing, was concerned with the finding that deeply pro-
cessed items (i.e., where semantic features were emphasized) are
remembered better than items receiving shallow processing (where
phonological or orthographic features were emphasized; Craik &
Lockhart, 1972; Hyde & Jenkins, 1969; Postman & Adams, 1956).
One reaction to the levels of processing approach, transfer-
appropriate processing, pointed out that one performs best on a
memory test when the processes engaged at study emphasize the
attributes of the studied material that are most relevant for the
upcoming memory test (Blaxton, 1989; Morris, Bransford, &
Franks, 1977). This is also closely related to the concept of
encoding specificity (Tulving & Thompson, 1973), which states
that retrieval of a piece of information will be facilitated if the
retrieval cue used to recall that information matches the specific
attributes that were emphasized during encoding. At a mechanistic
level, the CMR model is consistent with the principles of transfer-
appropriate processing and encoding specificity, in that one is
better able to remember a particular piece of information the more
one’s context representation (which is used as a retrieval cue)
matches the context representation that was present when that item
was originally studied. Thus, activating the source context associ-
ated with a subset of the studied material makes that material more
accessible, relative to material studied in another source context.

Although we focused specifically on task context in this article,
the CMR model was developed to account for manipulations of
many varieties of source characteristics. As such, some broad
parallels might be seen between this effort and the source-
monitoring framework of Johnson and colleagues (Hashtroudi,
Johnson, & Chrosniak, 1989; Johnson, Hashtroudi, & Lindsay,

1993). In the source-monitoring framework, source is meant to
refer broadly to the set of characteristics that specify the conditions
under which a given memory was acquired, much like the notion
of context being explored here. In other words, source in the
source-monitoring framework actually subsumes all of what we
refer to as context here. Perhaps most directly related to this
endeavor is the work by Jacoby, Shimizu, Daniels, and Rhodes
(2005) characterizing the role of source-constrained retrieval in
recognition memory paradigms. In the Future Directions section,
we explore the possibility of applying the CMR model fruitfully in
this domain.

Another domain in which the notion of task context receives
much attention is the behavioral study of task performance. Re-
searchers have shown that there is a cost to performance associated
with switching from one task to another task (e.g., Allport et al.,
1994; Wylie & Allport, 2000). This phenomenon most reliably
exhibits itself as an increased latency to respond to the stimulus
following the switch, also known as a switch cost. As presented in
Table 5, a reliable switch cost was observed in the latencies to
make judgments on post-switch items in the behavioral data from
the current paradigm (this decision process was not part of the
CMR model). The switch cost is taken as evidence that task
representations are being updated when one switches between
tasks. These task representations are thought to be a component of
an executive control system that guides processing of incoming
stimuli, in accordance with the particular demands of a given task
(Cohen et al., 1990).

Theories of task performance suggest that associative interfer-
ence arising from previously active task representations is an
important factor underlying reaction-time shift costs (Monsell,
2003). These interference effects are thought to arise from rapidly
formed associations between the features of the stimuli and the
task representation guiding the processing of those stimuli. Thus,
when a participant switches to performing a new task, associations
between the stimuli and the now-inappropriate other task repre-
sentation slow processing.

The CMR model predicts that two dependent measures in the
current experiment reflect the influence of task representations: the
task-clustering effect (in particular, the remote task-clustering ef-
fect) and the cost to IRTs after a task shift. According to the CMR
model, both of these behavioral effects arise from a combination of
context-association and context-disruption mechanisms. The
context-association mechanism is similar to the above-described
associative interference mechanism from the task-switching liter-
ature, in that it describes the process by which features of studied
items are associated with a concurrently active task representation.

At first glance, these mechanisms seem quite different: In the
free-recall paradigm, the associations formed between items and
task context exhibit themselves minutes later during the recall
period, but in the task-switching paradigm, these effects are ob-
served only seconds later and seem to dissipate once a few stimuli
have been judged with the new task. However, some researchers
have hypothesized that in the task-switching paradigm, these in-
terfering associations are still present, but control processes detect
the conflict between the two competing tasks and support the
current task, allowing it to overcome any interference arising from
the now-inappropriate task. Thus, the associations between stimuli
and tasks only exhibit themselves behaviorally in the first trials
following a shift, before control processes have had a chance to

148 POLYN, NORMAN, AND KAHANA



activate (Botvinick, Cohen, & Carter, 2004). If true, this predicts
that the magnitude of a participant’s switch cost will be positively
correlated with the degree of task clustering observed for that
participant during a later recall period (as well as that participant’s
IRT shift cost). A future study blending the techniques of task-
switching paradigms with free-recall paradigms will be able to test
this prediction.

Developing the CMR Model of Encoding Dynamics

In the present investigation, we have chosen to focus on
retrieval-period dynamics to simplify the model under consider-
ation. However, a number of researchers have established the
importance of study-period rehearsal dynamics in understanding
performance in the overt-rehearsal free-recall paradigm (Brodie &
Murdock, 1977; Laming, 2006; Rundus, 1971; Rundus & Atkin-
son, 1970; Tan & Ward, 2000). It is likely that covert rehearsal
processes also play a role in the IFR paradigm.

Laming (2008) suggests that the mechanisms underlying re-
hearsal are the same as those underlying recall. If so, it would be
a straightforward extension of the model to include a short burst of
retrieval in the interval between the presentation of each studied
item. Such an addition to the model would allow us to simulate the
pattern of rehearsals during free recall. The work of Murdock and
Metcalfe (1978) and Tan and Ward (2000) suggests that this might
provide a rehearsal-based explanation for the primacy effect,
which would allow us to remove the two model parameters con-
trolling the primacy gradient, although several parameters would
likely need to be added to characterize the rehearsal process.
Although it is not clear whether this addition would shed addi-
tional light on the dynamics of the organizational processes under
investigation here, the CMR model predicts that these organiza-
tional factors (semantic, temporal, and source) will influence the
order of rehearsals in the overt-rehearsal free-recall paradigm. The
influence of temporal context during rehearsal is clear from a
number of studies (Bhatarah, Ward, & Tan, 2006; Friendly, 1979;
Laming, 2008; Ward et al., 2003), but the influence of semantic
and source information during rehearsal has not been character-
ized.

One aspect of the model fits that could potentially be related to
these covert rehearsal processes is the inability of the CMR model
to match the exact shape of the probability of first recall (PFR)
curve (the probability of recalling a particular serial position in the
first output position) for the Murdock (1962) dataset (depicted in
Howard & Kahana, 1999, Figure 1). The CMR model predicts that
the participant is most likely to start recall with the final item and
that the probability of earlier items initiating recall falls off rapidly
and monotonically (possibly with a small bump for the primacy
positions). However, in the Murdock (1962) study, participants
more often began recall two or three positions from the end of the
list (producing a nonmonotonic, or “humped,” PFR curve).

The nonmonotonicity in the PFR curve has been taken as
support for the notion of a short-term buffer, where items in the
buffer are reported in the order in which they were inserted into the
buffer (in other words, “oldest first”). This has been cast as a
challenge for context-based theories of recency (Farrell, 2008).
However, it is possible that if participants covertly start to recall
list items prior to the onset of the recall start signal, the first
“overt” recall could come from a slightly earlier serial position

(Brodie & Murdock, 1977; Rundus, 1971; Tan & Ward, 2000).
Finally, many free-recall studies do not exhibit this nonmonoto-
nicity in the PFR curve (producing, instead, a curve that peaks with
the final item; Howard & Kahana, 1999; Howard, Youker, &
Venkatadass, 2008; Kahana, Howard, Zaromb, & Wingfield, 2002;
as well as the present study). It is unclear which experimental
variables are responsible for this nonmonotonicity. It is important
that we understand what causes this effect to come and go before
we modify the model to account for it.

Relationship to Other Models of Free Recall

Models of memory search have often emphasized that memory
search involves a strategic, systematic, and serial inspection of a
number of locations in the memory system (Burgess & Shallice,
1996; James, 1890; Kintsch, 1970; Raaijmakers & Shiffrin, 1980;
Shiffrin, 1970). These models often detail a process by which the
memory system retrieves as many items as possible with one set of
cues before assembling a new set of cues in an attempt to recall
more items. These models of strategic retrieval would presumably
make similar predictions to those made by the CMR model re-
garding clustering by similarity and increased IRTs with a shift in
similarity across any of the organizational dimensions. However,
the CMR model describes an automatic process that produces
these phenomena, obviating the need for an executive system that
determines the optimal state of the next set of cues. Although there
is certainly room in the cognitive system for such executive
processes, it seems that for these data, the simpler CMR model is
sufficient.

The CMR model is part of a longstanding tradition of context-
based theories of human memory (Bower, 1972; Dennis & Hum-
phreys, 2001; Howard & Kahana, 2002a; McGeoch, 1942; Mur-
dock, 1997; Sederberg et al., 2008), whereby an internal context
representation is principally responsible for the guidance of mem-
ory search. These context-based models may be contrasted with
dual-store models of memory search (Davelaar, Goshen-Gottstein,
Ashkenazi, Haarmann, & Usher, 2005; Gillund & Shiffrin, 1984;
Kimball, Smith, & Kahana, 2007; Raaijmakers & Shiffrin, 1980;
Sirotin, Kimball, & Kahana, 2005), which posit that, in addition to
a context-guided search of long-term memory, a major proportion
of the behavioral variance is explained by a short-term buffer that
can concurrently maintain the representations of several recently
studied items.5

The modern debate between context-based and dual-store mod-
els of human memory centers on the notion of a short-term store,
which has been conceived as a buffer-like structure that can
concurrently maintain a few item representations (e.g., Davelaar et
al., 2005). When recall begins, the items still active in the buffer
are read out, and then a context-based recall process is responsible
for the rest of memory search. There has been longstanding friction
among researchers regarding whether the short-term store is a
necessary component of the memory system, or whether the dy-
namics of recall can be explained by a system with a single
context-based search mechanism (as implemented, e.g., in

5 Mensink and Raaijmakers (1988) straddled these two traditions in that
they used the dual-store SAM framework but posited a critical role for
context in explaining interference effects in paired-associates learning.
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TCM-A; Sederberg et al., 2008). Recently, Usher, Davelaar, Haar-
mann, and Goshen-Gottstein (2008) argued that TCM-A is itself a
dual-component model, the two components being the context
representation and the episodic association matrix (referred to as
MFC and MCF in both TCM-A and CMR). Of course, by this
scheme, the Davelaar et al. (2005) model has three components: a
context representation, an associative matrix, and a short-term
store. This contrast highlights what some may see as a shortcoming
of a context-based memory system: It has no explicit provision for
a separate working-memory component (Baddeley, 1986), thought
to be critical for explaining, for example, the ability of amnesic
patients to recall several items in a free-recall experiment, without
the ability to remember, a moment or so later, that they even
participated in such an experiment (Carlesimo, Marfia, Loasses, &
Caltagirone, 1996). However, as Sederberg et al. (2008) showed,
the context representation can be used to momentarily keep a set of
recently presented items in an enhanced state of accessibility
(using the pre-experimental connections between item and context
representations), allowing the model to fit the performance of
amnesic patients. By this view, the amnesic syndrome is best
characterized by an inability to form new associations between
item features and context representations.

A second behavioral phenomenon raised as a critical marker of
the presence of a short-term store is the sigmoidal shape of the
serial position curve for the recency items often seen in IFR (e.g.,
Murdock, 1962; see our Figure 5). Usher et al. (2008) suggested
that TCM (and, by extension, TCM-A and CMR) could not ac-
count for this effect because of the exponential decay of the
elements comprising the context representation. However, recall is
a dynamic process in these context-based models, and the proba-
bility of recall of the studied items does not map linearly onto the
activation of a particular context unit at the time of recall initiation
(owing both to context reinstatement and the nonlinear recall
competition). As can be seen in Figure 5, the CMR model is able
to fit the sigmoidal shape of the serial position curve (for another
example, see Kahana, Sederberg, & Howard, 2008).

Although both the short-term store and the context representa-
tion are activation-based components, there are important differ-
ences between them. The short-term store account suggests that the
first few recalls are items read out of the buffer, whereas context-
based accounts suggest that these items are recalled because of
their strong associations with the current state of the context
representation. A recent study by Howard, Vankatadass, Norman,
and Kahana (2007) threw these two accounts into sharp contrast by
showing that, when participants first recalled an item that was
presented twice in the list, the temporal neighbors of the original
presentation of the item showed an enhanced probability of being
recalled. This is a natural consequence of a context-based model,
where recall of the repeated item retrieves context related to both
presentations. It is difficult to see how a short-term store would
account for this phenomenon.

A related issue was explored in the current article, in our
analysis of the effect characterized by Farrell and Lewandowsky
(2008; also explored thoroughly by Howard, Sederberg, & Ka-
hana, 2008). This issue is described in the Temporal clustering
section under Simulation Analysis I: Basic Clustering Effects. In
brief, if one of the first items recalled comes from a mid-list
position, the next recall is sometimes another mid-list item (giving
rise to a contiguity effect) and is sometimes an end-of-list item

(giving rise to a recency effect). This finding was presented as a
challenge for context-based models, because a version of TCM
was unable to fit the data (Farrell & Lewandowsky, in press). As
seen in Figure 3, the CMR model is able to fit the effect qualita-
tively, showing both a contiguity effect and a recency effect for
these first recalls from mid-list positions. This is because, after the
first recall of the mid-list item, context is updated, creating a blend
of mid-list context and end-of-list context. However, the CMR
model underpredicts the magnitude of the contiguity effect in this
situation, and it is worth reviewing how this underprediction
arises.

Exploration of the parameter space of the model suggests that
the CMR model’s underprediction of the magnitude of the conti-
guity effect for early output positions is not something that can be
simply remedied by adjusting the model parameters. Raising the
recall period context-retrieval parameter (�rec

temp) can bring the
simulated results for the early output positions (see Figure 3B) into
line with the behavioral data (see Figure 3A). Raising �rec

temp causes
the just-recalled item to more strongly reinstate its associated
temporal context, which causes contiguous items to compete more
effectively against the end-of-list items in the decision competi-
tion. However, this adjustment causes the model to overpredict the
magnitude of the contiguity effect for later output positions, re-
ducing the overall goodness of fit of the model.

Two parameters control the likelihood that an early recall will
come from a mid-list serial position: the semantic association
parameter (s) and the noise parameter on the recall competition
(�). Increases in each of these parameters tend to wrest recalls
away from the end-of-list serial positions, s because semantic
associations cause transitions that are random with respect to list
structure, and � because all items are supported by noise equiva-
lently. However, although increasing either of these parameters
will increase the proportion of mid-list recalls, it will not increase
the contiguity effect for those recalls. In fact, each will tend to
work against the contiguity effect by increasing the likelihood that
the next item recalled comes from a random serial position.

One mechanism that could both increase the likelihood of mid-
list recalls early in the recall sequence and increase the size of the
contiguity effect for those recalls would be the addition of vari-
ability in encoding strength. If some items are better encoded than
others (by boosting the strength of the associative connections
between the feature representation and the context representation),
then these items would tend to be recalled earlier in the recall
sequence and, once recalled, would more strongly reinstate context
than would a less well-encoded item, causing a boost in the
contiguity effect. The remaining items would be less well encoded,
leading to a gradual reduction in the magnitude of the contiguity
effect over the course of the recall period.

Although the current version of CMR underpredicts the magni-
tude of the recency effect in this situation, it is unclear how a
short-term store model would predict a contiguity effect at all in
this situation. Davelaar et al. (2005), in a discussion of response
latencies, suggested that when the first recall of an item comes
from an early or mid-list position, that recall was likely because the
item managed to remain in the buffer throughout the list presen-
tation (p. 32). Although it is clear why one would see a recency
effect in this situation (the mid-list item shares the buffer with
some of the final items from the list), it is unclear why reading out
a mid-list item from the short-term store would then lead to recall
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of another mid-list item from a neighboring position in the study
sequence (for a more thorough examination of this issue, see
Howard, Sederberg, & Kahana, 2008).

Although the current study makes some points relevant to the
debate between dual-store and context-based models, the focus of
the work is on developing our understanding of the nature of the
context representation, a central component of both classes of
models. Specifically, we show how the mechanisms developed in
recent work on the nature of temporal context can be generalized
to a much broader range of context-related phenomena, in partic-
ular, those corresponding to the source characteristics of the stud-
ied items. The CMR model describes the dynamics by which these
source representations influence memory search, as well as how
they interact with other components of the memory system. The
goal of this endeavor is to create the simplest possible model that
is consistent with the widest range of behaviors exhibited by the
human memory system, in the domain of free recall. It is our hope
that the CMR model will prove useful in determining the role of
context representations in other related paradigms, beginning with
the wide range of free-recall variants that have arisen over the
many decades of research in this domain.

The Control of Memory Search: Future Directions

The best-fit version of the CMR model provides a set of param-
eter values that characterize the operation of the human memory
system in terms of several relatively simple mechanisms (e.g.,
context updating, association formation, and decision making).
The critical next step in this endeavor is to evaluate the utility of
the model as an interpretive tool. It is our hope that the model can
be used to disentangle the factors at work during memory search,
both in the behavioral and neural domains. Here, we outline some
future work that may benefit from the CMR model: first, a de-
scription of how the model may extend our understanding of the
memory deficit observed in healthy aging (Hasher & Zacks, 1988;
Kahana et al., 2002; Kahana & Wingfield, 2000; Naveh-Benjamin,
2000); second, a description of how the model may shed light on
neural reinstatement effects during memory retrieval.

Howard, Kahana, and Wingfield (2006) showed that TCM could
be used to investigate age-related associative impairment by ex-
amining the temporal clustering behavior of young and older
participants in a free-recall task. They concluded that the reduced
temporal clustering observed in older participants (paired with
intact recall initiation) was consistent with a variant of TCM in
which older adults have an impaired ability to retrieve the temporal
context associated with each studied item. The idea that the ability
to retrieve associations is impaired in older participants is consis-
tent with the finding of impaired performance in the associative
recognition paradigm (e.g., Naveh-Benjamin, 2000) and in a num-
ber of source-recognition paradigms (Chalfonte & Johnson, 1996;
Hashtroudi et al., 1989; Johnson et al., 1993; McIntyre & Craik,
1987), in which one must retrieve associations between item and
source information to respond correctly.

The generalization of TCM to create the CMR model primarily
involved the addition of machinery to handle source information;
this substantially broadens the class of memory phenomena to
which the model can be applied. For example, the CMR model
could be used to investigate whether older adults’ source-
association deficits extend into the domain of free recall and

whether these deficits are best explained as an inability to retrieve
associations between item features and source context, or an in-
ability to inhibit the activation of competing representations (such
as a competing source representation; Hasher & Zacks, 1988). A
study of older adults in a continuous performance task suggests
that the memory deficit in older adults may be related to an
inability to properly maintain contextual representations (Braver et
al., 2001), which causes older adults to be more sensitive to
context disruption than are younger participants. The source-
manipulation paradigm of the current article is well designed to
assess this hypothesis: By examining the best-fit parameters for a
set of older adults, we can assess the level of source association as
well as the level of task-shift related disruption. In line with the
arguments presented above, we expect that the best-fit model will
show decreased associative strength between source context and
item features, as well as increased task-shift-related disruption of
temporal context, leading to decreased remote same-task clustering
but increased local clustering (much like that shown by the pure
disruption model variant in Figure 4E). Furthermore, older partic-
ipants will likely show a larger decrement to memorability of items
because of task shifts (and a larger relative increase in memora-
bility of the final train), owing to the increase in the disruption
parameter. Obtaining these results would extend our understanding
of the age-related associative deficit and provide further evidence
for the utility of CMR as a general model of free recall.

A second future direction involves bridging relatively abstract
cognitive theories of memory with the burgeoning literature on the
neural substrate of memory. Models of memory search, such as
TCM and CMR, provide a framework with which to interpret the
functional significance of patterns of brain activity observed dur-
ing free-recall performance. Recent studies have begun to visualize
the process of memory reinstatement, whereby the pattern of
neural activity observed when one studies a particular item is
revived when that item is later recalled (Polyn, Natu, Cohen, &
Norman, 2005; Prince, Daselaar, & Cabeza, 2005; Sederberg et al.,
2007; Wheeler, Petersen, & Buckner, 2000).

These studies raise the possibility that we can identify the neural
correlates of the item and context representations characterized by
the CMR model and track the coming and going of these repre-
sentations over the course of memory search. Polyn et al. (2005)
took a step in this direction, by having participants study items
drawn from three distinct categories (celebrities, landmarks, and
objects). Using machine-learning techniques (Norman, Polyn,
Detre, & Haxby, 2006), Polyn et al. (2005) characterized the
pattern of brain activity associated with each study category, on a
participant-by-participant basis. These machine-learning tech-
niques were then used to assess the relative strengths of each
category-specific pattern on a second-by-second basis over the
course of the recall period. They found that the reinstatement of a
particular category pattern predicted the upcoming recall of an
item from that category. The CMR model suggests that the patterns
identified in the Polyn et al. (2005) study were likely a blend
of item and context information. According to the model, when an
item is recalled, the system revives not only that item’s represen-
tation but also the pattern of context activity associated with that
item. This context pattern then shapes the course of the following
search, determining the probability of recalling any given studied
item.
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The next frontier in understanding the neural basis of memory
search involves identifying the neural substrate of context. The
CMR model provides a precise specification of the functional
properties of the context representation: It must reflect the features
and statistical properties of studied items, integrate information
over long time scales, and return to a prior state, given the recall
of an item (Polyn & Kahana, 2008). Using these specifications,
researchers may be able to identify candidate anatomical regions
for the neural seat of context in the human brain. An emerging
view, summarized by Polyn and Kahana (2008), is that prefrontal
cortex is centrally involved in contextual processing. Patterns of
activity in prefrontal cortex play a double role, both guiding how
item representations in more posterior brain regions are processed
(Miller & Cohen, 2001) and serving to contextualize these patterns
through associations formed between the two sets of patterns by
the hippocampal formation (see also Norman, Detre, & Polyn,
2008). This hypothesis is consistent with evidence drawn from
neuroimaging studies of memory retrieval (Blumenfeld & Ranga-
nath, 2007), neuropsychological studies of patients with prefrontal
damage (Schacter, 1987), and computational models of the role of
prefrontal cortex in free recall (Becker & Lim, 2003). A mecha-
nistic specification of the role of prefrontal cortex in memory
search will prove quite valuable in integrating the current frame-
work with computational models of the medial temporal memory
system (McClelland, McNaughton, & O’Reilly, 1995; Norman &
O’Reilly, 2003).

The CMR model, coupled with a set of neural linking hypoth-
eses, may serve as a valuable tool in interpreting the neural
patterns observed in prefrontal and other brain regions during
study as well as during the recall period. The CMR model is a
predictive framework; given a particular set of studied items
(which vary in semantic relatedness, list position, and source
characteristics), the model can provide the most likely recall se-
quences. As the preceding analyses show, these predicted recall
sequences match the characteristics of the observed sequences
quite well. Patterns of neural activity observed during the study
and recall periods, in various brain regions, can be used to gain
predictive power regarding the order of recalls, allowing us to gain
insight into the functional contribution of these regions in the
domain of memory search.
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Appendix A

Experimental Methods for the Source-Manipulation Experiment

Forty-five participants (28 female) from the University of Penn-
sylvania community received payment in accordance with the
University’s internal review board guidelines. Stimuli were pre-
sented with a computer running Python Experiment Programming
Library (available from http://pyepl.sourceforge.net; Geller,
Schleifer, Sederberg, Jacobs, & Kahana, 2007). Verbal responses
were recorded with a microphone and parsed with the pyParse
package.

On each trial, a list of 24 words was presented; each item was
concurrently presented with a task cue, indicating the judgment
that the participant should make for that word. Each word was
presented for 3 s. The two tasks were a size judgment (“Will this
item fit into a shoebox?”) and an animacy judgment (“Does this
word refer to something living or not living?”). Immediately
following the list, a row of asterisks appeared, along with a beep,
indicating the start of the recall period. Participants were given
90 s to recall as many words as they could remember from the
most recent list, in any order.

There were two conditions: control and task shift. On control
lists, every word was judged with the same encoding task. On the
task-shift lists, participants shifted back and forth between the two

tasks, first judging a short train of items from one task, then
switching to the other task for another short train. Each train was
constrained to be between two and six items long (inclusive), and
the ordering of these trains was randomized. We counterbalanced
(across lists) the task used to start the list and the number of trains
in the list (six or seven).

The words on a given list were chosen such that in total, there
would be a roughly equivalent number of items associated with
each response (big, small, living, and nonliving). Many words are
ambiguous with regard to the “correct” judgment (e.g., given the
word dog, an image of a chihuahua might elicit a small judgment,
whereas an image of a Great Dane might elicit a big judgment).
We ran a small norming study, in which 12 participants judged
each of 1,297 words using these tasks. This allowed us, in the
current experiment, to avoid words that were ambiguous, to choose
words that tended to be quickly judged, and to include roughly
equal numbers of words associated with each response. In general,
the responses that participants made in the free-recall experiment
were highly correlated with the responses of the participants in the
norming study.

Appendix B

Details of the USF Free-Association Simulations

As described in the Associative connections: Learning and
semantic structure section of the text, the semantic clustering
estimates of the CMR model are inflated relative to the behav-
ioral data. Here, we describe a simulation study designed to
estimate the degree to which an average human participant’s
semantic memory mismatches the LSA semantic association

values, to create a correction factor to apply to the semantic
clustering scores produced by the model.

In the USF free-association study, a large number of participants
were asked to respond to a given cue word with the first word that
came to mind. We randomly chose five words from the USF
database that were also words in the word pool of our source-

(Appendixes continue)
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manipulation experiment (agent, bracelet, elephant, glove, plane).
Between these five cue words, 74 distinct target words were
produced by the USF participants. We obtained the LSA associa-
tion values (as were used to create the semantic memory for CMR)
for each cue word to the full set of 74 targets, excluding words not
in the LSA corpus. We then created a very simple choice model,
using the LSA association values (CMR’s semantic memory):
Given a particular cue word, the model selects the target with the
largest LSA association value as its response. The model had one
parameter: the variance of randomly distributed noise that was
added to each LSA association value to simulate the variability
between participants. We searched for the value of this variance

that minimized the difference (measured with root mean square
deviation) between the responses produced by the CMR semantic
memory and the USF behavioral data. If the variance is too low,
the model does not produce enough variability in its responses to
match the USF data. If the variance is too high, the model may
produce an entirely unrelated target (e.g., secret given elephant).
The technique produced a smooth and stable curve with a mini-
mum when the variance of the noise distribution was set to 0.41.
This variance estimate was then used, as described in the main
text, to correct the estimates of semantic clustering produced by
the CMR model.

Appendix C

Details of the Genetic Algorithm-Fitting Technique

A genetic algorithm was used to find the parameter set for each
variant of the CMR model that allowed the model to best fit the
behavioral data. To determine the best-fitting parameter set, we
attempted to simultaneously minimize the deviation between the
model predictions and the behavioral data for a large number of
behavioral measures. We used the following aspects of the behav-
ioral data to assess the goodness of fit of a given parameter set of
the model (93 data points in total; each point contributed equally
to the overall chi-squared goodness of fit):

• The overall probability of making a same-task transition, as
well as the probability of making a remote same-task transi-
tion, for both the task-shift and relabeled control conditions
(four data points).

• The binned lag-CRP values for recall transitions originating
from serial positions 5 through 19, both for early output
positions (1 to 3) and later output positions (4 onward), from
the control condition (lag bins �19 to �18, �17 to �6, �5
to �2, �1, 1, 2 to 5, 6 to 17, and 18 to 19; 16 data points).

• The final three serial positions of the probability of first,
second, and third recall curves from the control condition
(nine data points).

• All points from the train serial-position analysis for the
task-shift and relabeled control conditions, as well as the
differences between the conditions at each train position (21
data points).

• The points from �5 to �5 from the train-lag CRP analysis
for the task-shift and relabeled control conditions, as well as
the differences between the conditions at each train lag (33
data points).

• The mean IRT for the first 10 output positions from the
control condition (10 data points).

For each of the model variants, we used the following procedure
to find the best-fit parameter set: The first generation of the genetic
algorithm consisted of 8,000 points uniformly randomly selected
from predetermined ranges along each of the parameters. We then
ran the algorithm for 15 generations, where each successive gen-
eration took the most fit 20% of the previous generation, and used
these “parent” parameter sets to form 1,024 new parameter sets to
simulate, by randomly repairing the parameters and adding random
“mutation” to all values (using a random normal distribution with
M � 0 and SD � 0.1). We then ran another 10 generations, with
the mutation standard deviation dropped to 0.05 and 512 parameter
sets per generation. For these 10 generations, each simulated
experiment generated three times as much data as the original
experiment. Finally, we reran each of the top 256 best-fitting
parameter sets (generating 12 times as much data as the original
experiment) to find the final parameter set.

In calculating BIC goodness-of-fit scores reported in the main
text, we scaled down the contribution of the IRTs (by dividing
these observations by 105). This served to bring the variability in
IRTs into the same range as the performance scores and condi-
tional probabilities reported in the other analyses and ensured that
the IRTs had a similar influence on the goodness of fit of the
model to that of the other behavioral measures. Such scaling was
not necessary for the chi-squared goodness of fit, which is already
normalized by the standard error of the observations (causing the
influence of the IRTs, which have large error terms, to be roughly
comparable with the other data points).
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